Generalized hypergeometric functions at unit argument
HTML articles powered by AMS MathViewer
- by Wolfgang Bühring
- Proc. Amer. Math. Soc. 114 (1992), 145-153
- DOI: https://doi.org/10.1090/S0002-9939-1992-1068116-2
- PDF | Request permission
Abstract:
The analytic continuation near $z = 1$ of the hypergeometric function $_{p + 1}{F_p}\left ( z \right )$ is obtained for arbitrary $p = 2,3, \ldots ,$, including the exceptional cases when the sum of the denominator parameters minus the sum of the numerator parameters is equal to an integer.References
- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
- W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. MR 0185155
- Bruce C. Berndt, Chapter 11 of Ramanujan’s second notebook, Bull. London Math. Soc. 15 (1983), no. 4, 273–320. MR 703753, DOI 10.1112/blms/15.4.273 —, Ramanujan’s notebooks, Part II, Springer-Verlag, New York, 1989.
- Wolfgang Bühring, The behavior at unit argument of the hypergeometric function $_3F_2$, SIAM J. Math. Anal. 18 (1987), no. 5, 1227–1234. MR 902328, DOI 10.1137/0518089 —, Transformation formulas for terminating Saalschützian hypergeometric series of unit argument (to appear) —, The behavior at unit argument of the generalized hypergeometric function (to appear)
- Ronald J. Evans, Ramanujan’s second notebook: asymptotic expansions for hypergeometric series and related functions, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 537–560. MR 938978
- Ronald J. Evans and Dennis Stanton, Asymptotic formulas for zero-balanced hypergeometric series, SIAM J. Math. Anal. 15 (1984), no. 5, 1010–1020. MR 755861, DOI 10.1137/0515078 Y. L. Luke, The special functions and their approximations, vol. 1, Academic Press, New York, 1969.
- N. E. Nørlund, Hypergeometric functions, Acta Math. 94 (1955), 289–349. MR 74585, DOI 10.1007/BF02392494
- Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
- Megumi Saigo, On properties of the Appell hypergeometric functions $F_{2}$ and $F_{3}$ and the generalized Gauss function $_{3}F_{2}$, Bull. Central Res. Inst. Fukuoka Univ. 66 (1983), 27–32. MR 730319
- Megumi Saigo and H. M. Srivastava, The behavior of the zero-balanced hypergeometric series ${}_pF_{p-1}$ near the boundary of its convergence region, Proc. Amer. Math. Soc. 110 (1990), no. 1, 71–76. MR 1036991, DOI 10.1090/S0002-9939-1990-1036991-1
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 145-153
- MSC: Primary 33C20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1068116-2
- MathSciNet review: 1068116