Generalized hypergeometric functions at unit argument
HTML articles powered by AMS MathViewer
 by Wolfgang Bühring PDF
 Proc. Amer. Math. Soc. 114 (1992), 145153 Request permission
Abstract:
The analytic continuation near $z = 1$ of the hypergeometric function $_{p + 1}{F_p}\left ( z \right )$ is obtained for arbitrary $p = 2,3, \ldots ,$, including the exceptional cases when the sum of the denominator parameters minus the sum of the numerator parameters is equal to an integer.References

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
 W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, StechertHafner, Inc., New York, 1964. MR 0185155
 Bruce C. Berndt, Chapter 11 of Ramanujan’s second notebook, Bull. London Math. Soc. 15 (1983), no. 4, 273–320. MR 703753, DOI 10.1112/blms/15.4.273 —, Ramanujan’s notebooks, Part II, SpringerVerlag, New York, 1989.
 Wolfgang Bühring, The behavior at unit argument of the hypergeometric function $_3F_2$, SIAM J. Math. Anal. 18 (1987), no. 5, 1227–1234. MR 902328, DOI 10.1137/0518089 —, Transformation formulas for terminating Saalschützian hypergeometric series of unit argument (to appear) —, The behavior at unit argument of the generalized hypergeometric function (to appear)
 Ronald J. Evans, Ramanujan’s second notebook: asymptotic expansions for hypergeometric series and related functions, Ramanujan revisited (UrbanaChampaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 537–560. MR 938978
 Ronald J. Evans and Dennis Stanton, Asymptotic formulas for zerobalanced hypergeometric series, SIAM J. Math. Anal. 15 (1984), no. 5, 1010–1020. MR 755861, DOI 10.1137/0515078 Y. L. Luke, The special functions and their approximations, vol. 1, Academic Press, New York, 1969.
 N. E. Nørlund, Hypergeometric functions, Acta Math. 94 (1955), 289–349. MR 74585, DOI 10.1007/BF02392494
 Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
 Megumi Saigo, On properties of the Appell hypergeometric functions $F_{2}$ and $F_{3}$ and the generalized Gauss function $_{3}F_{2}$, Bull. Central Res. Inst. Fukuoka Univ. 66 (1983), 27–32. MR 730319
 Megumi Saigo and H. M. Srivastava, The behavior of the zerobalanced hypergeometric series ${}_pF_{p1}$ near the boundary of its convergence region, Proc. Amer. Math. Soc. 110 (1990), no. 1, 71–76. MR 1036991, DOI 10.1090/S00029939199010369911
 Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
Additional Information
 © Copyright 1992 American Mathematical Society
 Journal: Proc. Amer. Math. Soc. 114 (1992), 145153
 MSC: Primary 33C20
 DOI: https://doi.org/10.1090/S00029939199210681162
 MathSciNet review: 1068116