An upper bound for the sum $\sum ^ {a+H}_ {n=a+1}f(n)$ for a certain class of functions $f$
HTML articles powered by AMS MathViewer
- by Edward Dobrowolski and Kenneth S. Williams
- Proc. Amer. Math. Soc. 114 (1992), 29-35
- DOI: https://doi.org/10.1090/S0002-9939-1992-1068118-6
- PDF | Request permission
Abstract:
For a certain class of functions $f:Z \to C$ an upper bound is obtained for the sum $\sum \nolimits _{n = a + 1}^{a + H} {f\left ( n \right )}$. This bound is used to give a proof of a classical inequality due to Pólya and Vinogradov that does not require the value of the modulus of the Gauss sum and to obtain an estimate of the sum of Legendre symbols $\sum \nolimits _{x = 1}^H {( ( {R{g^x} + S} )/p} )$, where $g$ is a primitive root of the odd prime $p,1 \leq H \leq p - 1$ and $RS$ is not divisible by $p$.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- Raymond Ayoub, An introduction to the analytic theory of numbers, Mathematical Surveys, No. 10, American Mathematical Society, Providence, R.I., 1963. MR 0160743
- D. A. Burgess, On a conjecture of Norton, Acta Arith. 27 (1975), 265–267. MR 364125, DOI 10.4064/aa-27-1-265-267
- D. A. Burgess, On character sums and $L$-series, Proc. London Math. Soc. (3) 12 (1962), 193–206. MR 132733, DOI 10.1112/plms/s3-12.1.193
- Adolf Hildebrand, On the constant in the Pólya-Vinogradov inequality, Canad. Math. Bull. 31 (1988), no. 3, 347–352. MR 956367, DOI 10.4153/CMB-1988-050-1 E. Landau, Abschätzungen von Charaktersummen, Einheiten und Klassenzahlen, Nachrichten Königl. Ges. Wiss. Gottingen (1918), 79-97.
- Karl K. Norton, On character sums and power residues, Trans. Amer. Math. Soc. 167 (1972), 203–226. MR 296034, DOI 10.1090/S0002-9947-1972-0296034-8 G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Gött. Nachr. (1918), 21-29. I. Schur, Einige Bemerkungen zur vorstehenden Arbeit des Herrn G. Pólya, Nachrichten Königl. Ges. Wiss. Göttingen (1918), 30-36. I. M. Vinogradov, Über die Verteilung der quadratischen Reste und Nichtreste, J. Soc. Phys. Math. Univ. Permi 2 (1919), 1-4.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 29-35
- MSC: Primary 11L40
- DOI: https://doi.org/10.1090/S0002-9939-1992-1068118-6
- MathSciNet review: 1068118