ON \(p \)-RADICAL BLOCKS OF FINITE GROUPS

AKIHIKO HIDA

(Communicated by Warren J. Wong)

Abstract. We give a sufficient condition on a \(p \)-block of a finite group under which the block is \(p \)-radical.

Let \(k[G] \) be the group algebra of a finite group \(G \) over an algebraically closed field \(k \) of characteristic \(p > 0 \). We call \(G \) \(p \)-radical if the induced module \((k_P)^G = k_P \otimes_{k[P]} k[G] \) from the trivial \(k[P] \)-module \(k_P \) is semisimple as a right \(k[G] \)-module where \(P \) is a Sylow \(p \)-subgroup of \(G \) (see [T; F, VI, 6]). Koshitani [Ko] showed that if the vertex \(v_x(V) \) of \(V \) is contained in \(\text{Ker} \; V \) (the kernel of \(V \)) for any simple \(k[G] \)-module \(V \) then \(G \) is \(p \)-radical.

We generalize this to a \(p \)-block form. Let \(B \) be a \(p \)-block of \(G \) and \(e_B \) be the block idempotent in \(k[G] \) corresponding to \(B \). We call \(B \) \(p \)-radical if \((k_P)^G \cdot e_B \) is a semisimple \(k[G] \)-module following Tsushima [T].

Theorem. If the vertex \(v_x(V) \) of \(V \) is contained in \(\text{Ker} \; V \) for any simple \(k[G] \)-module \(V \) in a \(p \)-block \(B \) of \(G \), then \(B \) is \(p \)-radical.

Throughout this paper we keep the notation as in the theorem. See the book of Feit [F] for the notion of vertices and other terminology.

Lemma 1. Assume that \(v_x(V) \subseteq \text{Ker} \; V \) for any simple \(k[G] \)-module \(V \) in \(B \).

(a) [HM, Lemma 1.3; Ko, Lemma 1]. If \(H \) is a normal \(p \)- or \(p' \)-subgroup of \(G \) and \(B \) is a \(p \)-block of \(G/H \) such that \(B = B \), then \(v_x(V) \subseteq \text{Ker} \; V \) for any simple \(k[G/H] \)-module \(V \) in \(B \).

(b) [Kn2, 3.7 Corollary; Ko, Lemma 2]. If \(B \) is the principal block of \(G \), then \(G \) is \(p \)-solvable.

Lemma 2. Let \(H \) be a normal subgroup of \(G \) containing a defect group of \(B \). If every block of \(H \) covered by \(B \) is \(p \)-radical then \(B \) is \(p \)-radical.

Proof. By [Kn1, Theorem 2.9] it suffices to show that \((k_P)^G \cdot e_B \) is semisimple as a \(k[H] \)-module. Let \(\{b_i\} \) be the set of all blocks of \(H \) covered by \(B \). By Mackey decomposition \((k_P)^G \cdot e_B \) is a direct summand of

\[
\bigoplus_{i} \bigoplus_{t \in P \setminus G/H} (k_P \cap H)^H \cdot e_{b_i}
\]
as a $k[H]$-module. Since $P^t \cap H$ is a Sylow p-subgroup of H for all t and b_i is p-radical for all i, $(k_F)^G \cdot e_B$ is a semisimple $k[H]$-module.

Proof of the theorem. First, assume that B is not the principal block. There is a simple $k[G]$-module V in B such that $\text{vx}(V)$ is equal to the defect group of B. Let $K = \text{Ker} V$, and let b be any block of K covered by B. For any simple $k[K]$-module W in b, there is a simple $k[G]$-module U in B such that W is isomorphic to a direct summand of U as a $k[K]$-module. We may assume $\text{vx}(W) \subseteq \text{vx}(U)$. Hence, $\text{vx}(W) \subseteq \text{vx}(U) \cap K \subseteq \text{Ker} U \cap K \subseteq \text{Ker} W$. Since $K \neq G$, b is p-radical by induction on $|G|$. Hence B is p-radical by Lemma 2. So we may assume that B is the principal block. By Lemma 1(b), G is p-solvable. If $0_p, (G) = 1$, then B is the unique block of G by Fong's Theorem [F, X Theorem 1.5]. By Lemma 1(a) and induction, $G/0_p(G)$ is p-radical. Hence G is p-radical by [T, Proposition 1]. Let $H = 0_p, (G)$. If $H \neq 1$ then G/H is p-radical by Lemma 1(a) and induction. Hence B is p-radical since $(k_F)^G \cdot e_B \cong (k_H)^G$.

Corollary [Ko, Theorem]. If the vertex of V is contained in $\text{Ker} V$ for any simple $k[G]$-module V, then G is p-radical.

ACKNOWLEDGMENTS

I would like to thank Doctor S. Koshitani for suggesting this problem.

REFERENCES

Department of Mathematics, Division of Mathematics and Physical Sciences, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Chiba-city, 260, Japan