ON p-RADICAL BLOCKS OF FINITE GROUPS

AKIHIKO HIDA

(Communicated by Warren J. Wong)

Abstract. We give a sufficient condition on a p-block of a finite group under which the block is p-radical.

Let $k[G]$ be the group algebra of a finite group G over an algebraically closed field k of characteristic $p > 0$. We call G p-radical if the induced module $(kP)^G = kP \otimes_{k[P]} k[G]$ from the trivial $k[P]$-module kP is semisimple as a right $k[G]$-module where P is a Sylow p-subgroup of G (see [T; F, VI, 6]). Koshitani [Ko] showed that if the vertex $v x(V)$ of V is contained in $\ker V$ (the kernel of V) for any simple $k[G]$-module V then G is p-radical. We generalize this to a p-block form. Let B be a p-block of G and e_B be the block idempotent in $k[G]$ corresponding to B. We call B p-radical if $(kP)^G \cdot e_B$ is a semisimple $k[G]$-module following Tsushima [T].

Theorem. If the vertex $v x(V)$ of V is contained in $\ker V$ for any simple $k[G]$-module V in a p-block B of G, then B is p-radical.

Throughout this paper we keep the notation as in the theorem. See the book of Feit [F] for the notion of vertices and other terminology.

Lemma 1. Assume that $v x(V) \subseteq \ker V$ for any simple $k[G]$-module V in B.
(a) [HM, Lemma 1.3; Ko, Lemma 1]. If H is a normal p- or p'-subgroup of G and B is a p-block of G/H such that $B \supseteq \overline{B}$, then $v x(V) \subseteq \ker \overline{V}$ for any simple $k[G/H]$-module \overline{V} in \overline{B}.
(b) [Kn2, 3.7 Corollary; Ko, Lemma 2]. If B is the principal block of G, then G is p-solvable.

Lemma 2. Let H be a normal subgroup of G containing a defect group of B. If every block of H covered by B is p-radical then B is p-radical.

Proof. By [Kn1, Theorem 2.9] it suffices to show that $(kP)^G \cdot e_B$ is semisimple as a $k[H]$-module. Let $\{b_i\}$ be the set of all blocks of H covered by B. By Mackey decomposition $(kP)^G \cdot e_B$ is a direct summand of

$$\bigoplus_{i \in P \setminus G/H} (kP \cap H)^H \cdot e_{b_i}$$

Received by the editors July 31, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 20C20.

©1992 American Mathematical Society
0002-9939/92 $1.00 + .25$ per page
as a $k[H]$-module. Since $P_t \cap H$ is a Sylow p-subgroup of H for all t and b_i is p-radical for all i, $(k_P)^G \cdot e_B$ is a semisimple $k[H]$-module.

Proof of the theorem. First, assume that B is not the principal block. There is a simple $k[G]$-module V in B such that $\nu x(V)$ is equal to the defect group of B. Let $K = \text{Ker} V$, and let b be any block of K covered by B. For any simple $k[K]$-module W in b, there is a simple $k[G]$-module U in B such that W is isomorphic to a direct summand of U as a $k[K]$-module. We may assume $\nu x(W) \subseteq \nu x(U)$. Hence, $\nu x(W) \subseteq \nu x(U) \cap K \subseteq \text{Ker} U \cap K \subseteq \text{Ker} W$. Since $K \neq G$, b is p-radical by induction on $|G|$. Hence B is p-radical by Lemma 2. So we may assume that B is the principal block. By Lemma 1(b), G is p-solvable. If $0_p,(G) = 1$, then B is the unique block of G by Fong's Theorem [F, X Theorem 1.5]. By Lemma 1(a) and induction, $G/0_p(G)$ is p-radical. Hence G is p-radical by [T, Proposition 1]. Let $H = 0_p,(G)$. If $H \neq 1$ then G/H is p-radical by Lemma 1(a) and induction. Hence B is p-radical since $(k_P)^G \cdot e_B \cong (k_H)^G$.

Corollary [Ko, Theorem]. If the vertex of V is contained in $\text{Ker} V$ for any simple $k[G]$-module V, then G is p-radical.

ACKNOWLEDGMENTS

I would like to thank Doctor S. Koshitani for suggesting this problem.

REFERENCES

DEPARTMENT OF MATHEMATICS, DIVISION OF MATHEMATICS AND PHYSICAL SCIENCES, GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, CHIBA UNIVERSITY, YAYOI-CHO, CHIBA-CITY, 260, JAPAN