Regular PI metric flows are equicontinuous
HTML articles powered by AMS MathViewer
- by Eli Glasner
- Proc. Amer. Math. Soc. 114 (1992), 269-277
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070517-3
- PDF | Request permission
Abstract:
Let $(X,T)$ be a metrizable minimal flow. We show that a homomorphism $X \stackrel {\pi }{\to } Y$, which is regular, and PI can be decomposed as $X \stackrel {\sigma }{\to } Z \stackrel {\rho }{\to } Y$, $\pi = \rho \circ \sigma$, where $\rho$ is proximal and $\sigma$ is a compact group extension. In particular, assuming further that $T$ is abelian and taking $Y$ to be the trivial one point flow, we find that a metric regular PI flow is a compact group rotation.References
- Joseph Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. MR 956049 S. Banach, Théorie des opérations linéaires, Chelsea, New York, 1963.
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477–515. MR 157368, DOI 10.2307/2373137
- Eli Glasner, A topological version of a theorem of Veech and almost simple flows, Ergodic Theory Dynam. Systems 10 (1990), no. 3, 463–482. MR 1074314, DOI 10.1017/S0143385700005691
- Shmuel Glasner, Proximal flows, Lecture Notes in Mathematics, Vol. 517, Springer-Verlag, Berlin-New York, 1976. MR 0474243
- W. H. Gottschalk, Transitivity and equicontinuity, Bull. Amer. Math. Soc. 54 (1948), 982–984. MR 26765, DOI 10.1090/S0002-9904-1948-09119-4
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- I. Namioka, Ellis groups and compact right topological groups, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 295–300. MR 737409, DOI 10.1090/conm/026/737409
- William A. Veech, Topological dynamics, Bull. Amer. Math. Soc. 83 (1977), no. 5, 775–830. MR 467705, DOI 10.1090/S0002-9904-1977-14319-X
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 269-277
- MSC: Primary 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070517-3
- MathSciNet review: 1070517