A generalization of the handle addition theorem
HTML articles powered by AMS MathViewer
- by Ying Qing Wu
- Proc. Amer. Math. Soc. 114 (1992), 237-242
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070535-5
- PDF | Request permission
Abstract:
We will generalize Jaco’s Handle Addition Theorem to the $n$-compressibility of surfaces on the boundary of $3$-manifolds. Several corollaries are given that show how the theorem can be applied to different situations.References
- A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275–283. MR 918537, DOI 10.1016/0166-8641(87)90092-7
- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237–300. MR 881270, DOI 10.2307/1971311
- C. McA. Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987), no. 3, 285–299. MR 918538, DOI 10.1016/0166-8641(87)90093-9
- William Jaco, Adding a $2$-handle to a $3$-manifold: an application to property $R$, Proc. Amer. Math. Soc. 92 (1984), no. 2, 288–292. MR 754723, DOI 10.1090/S0002-9939-1984-0754723-6
- Klaus Johannson, On surfaces in one-relator $3$-manifolds, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 157–192. MR 903864
- Józef H. Przytycki, Incompressibility of surfaces after Dehn surgery, Michigan Math. J. 30 (1983), no. 3, 289–308. MR 725782, DOI 10.1307/mmj/1029002906 M. Scharlemann, Outermost forks and a theorem of Jaco, Proc. Rochester Conf., 1982. Y-Q. Wu, Incompressibility of surfaces in surgered $3$-manifolds, preprint.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 237-242
- MSC: Primary 57N10; Secondary 57M25, 57M99
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070535-5
- MathSciNet review: 1070535