Composition operators on potential spaces
Authors:
David R. Adams and Michael Frazier
Journal:
Proc. Amer. Math. Soc. 114 (1992), 155-165
MSC:
Primary 46E35; Secondary 47B38
DOI:
https://doi.org/10.1090/S0002-9939-1992-1076570-5
MathSciNet review:
1076570
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: By a result of B. Dahlberg, the composition operators ${T_H}f = H \circ f$ need not be bounded on some of the Sobolev spaces (or spaces of Bessel potentials) even for very smooth functions $H = H\left ( t \right ),H\left ( 0 \right ) = 0$, unless of course, $H\left ( t \right ) = ct$. In this note a natural domain is found for ${T_H}$ that is, in a sense, maximal and on which the $\left \{ {{T_H}} \right \}$ form an algebra of bounded operators. Here the functions $H\left ( t \right )$ need not be bounded though they are required to have a sufficient number of bounded derivatives.
- David R. Adams, On the existence of capacitary strong type estimates in $R^{n}$, Ark. Mat. 14 (1976), no. 1, 125–140. MR 417774, DOI https://doi.org/10.1007/BF02385830
- David R. Adams and Michael Frazier, BMO and smooth truncation in Sobolev spaces, Studia Math. 89 (1988), no. 3, 241–260. MR 956241, DOI https://doi.org/10.4064/sm-89-3-241-260
- David R. Adams and John C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc. 37 (1973), 529–534. MR 328109, DOI https://doi.org/10.1090/S0002-9939-1973-0328109-5
- A.-P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 33–49. MR 0143037
- Björn E. J. Dahlberg, A note on Sobolev spaces, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 183–185. MR 545257
- Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070037, DOI https://doi.org/10.1016/0022-1236%2890%2990137-A
- L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115–162. MR 109940
- Jaak Peetre, New thoughts on Besov spaces, Mathematics Department, Duke University, Durham, N.C., 1976. Duke University Mathematics Series, No. 1. MR 0461123
- John C. Polking, A Leibniz formula for some differentiation operators of fractional order, Indiana Univ. Math. J. 21 (1971/72), 1019–1029. MR 318868, DOI https://doi.org/10.1512/iumj.1972.21.21082
- Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031–1060. MR 0215084
- Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E35, 47B38
Retrieve articles in all journals with MSC: 46E35, 47B38
Additional Information
Keywords:
Sobolev space,
potential space,
composition operator
Article copyright:
© Copyright 1992
American Mathematical Society