Group completions and orbifolds of variable negative curvature
HTML articles powered by AMS MathViewer
- by Christopher W. Stark
- Proc. Amer. Math. Soc. 114 (1992), 191-194
- DOI: https://doi.org/10.1090/S0002-9939-1992-1079709-0
- PDF | Request permission
Abstract:
W. J. Floyd’s comparison of the Furstenberg maximal boundary of a noncompact, ${\mathbf {R}}$-rank one, connected semisimple Lie group $G$ with finite center and the group completion of a discrete, cocompact subgroup $\Gamma$ of $G$ is extended to a homeomorphism between the group completion of the fundamental group $\Gamma$ of a closed Riemannian orbifold $M = \Gamma \backslash X$ of strictly negative sectional curvatures and the sphere at infinity in the Eberlein-O’Neill compactification $\overline X$ of the universal cover $X$ of $M$.References
- Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 823981, DOI 10.1007/978-1-4684-9159-3
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
- P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 336648
- William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205–218. MR 568933, DOI 10.1007/BF01418926
- William J. Floyd, Group completions and Furstenberg boundaries: rank one, Duke Math. J. 51 (1984), no. 4, 1017–1020. MR 771393, DOI 10.1215/S0012-7094-84-05146-9
- Pekka Tukia, On isomorphisms of geometrically finite Möbius groups, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 171–214. MR 783351
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 191-194
- MSC: Primary 57S30; Secondary 53C21
- DOI: https://doi.org/10.1090/S0002-9939-1992-1079709-0
- MathSciNet review: 1079709