## Morava $K$-theory and the free loop space

HTML articles powered by AMS MathViewer

- by John McCleary and Dennis A. McLaughlin PDF
- Proc. Amer. Math. Soc.
**114**(1992), 243-250 Request permission

## Abstract:

We generalize a result of Hopkins, Kuhn, and Ravenel relating the $n$ th Morava $K$-theory of the free loop space of a classifying space of a finite group to the $(n + 1)$ st Morava $K$-theory of the space. We show that the analogous result holds for any Eilenberg-Mac Lane space for a finite group. We also compute the Morava $K$-theory of the free loop space of a suspension, and comment on the general problem.## References

- Jean-Luc Brylinski,
*Representations of loop groups, Dirac operators on loop space, and modular forms*, Topology**29**(1990), no. 4, 461–480. MR**1071369**, DOI 10.1016/0040-9383(90)90016-D - Edgar H. Brown Jr. and Franklin P. Peterson,
*A spectrum whose $Z_{p}$ cohomology is the algebra of reduced $p^{th}$ powers*, Topology**5**(1966), 149–154. MR**192494**, DOI 10.1016/0040-9383(66)90015-2 - G. E. Carlsson and R. L. Cohen,
*The cyclic groups and the free loop space*, Comment. Math. Helv.**62**(1987), no. 3, 423–449. MR**910170**, DOI 10.1007/BF02564455 - Ralph L. Cohen,
*A model for the free loop space of a suspension*, Algebraic topology (Seattle, Wash., 1985) Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp. 193–207. MR**922928**, DOI 10.1007/BFb0078743 - Tahsin Ghazal,
*A new example in $K$-theory of loopspaces*, Proc. Amer. Math. Soc.**107**(1989), no. 3, 855–856. MR**984790**, DOI 10.1090/S0002-9939-1989-0984790-0 - Thomas G. Goodwillie,
*Cyclic homology, derivations, and the free loopspace*, Topology**24**(1985), no. 2, 187–215. MR**793184**, DOI 10.1016/0040-9383(85)90055-2 - Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel,
*Generalized group characters and complex oriented cohomology theories*, J. Amer. Math. Soc.**13**(2000), no. 3, 553–594. MR**1758754**, DOI 10.1090/S0894-0347-00-00332-5 - David Copeland Johnson and W. Stephen Wilson,
*$BP$ operations and Morava’s extraordinary $K$-theories*, Math. Z.**144**(1975), no. 1, 55–75. MR**377856**, DOI 10.1007/BF01214408 - Haynes Miller,
*The elliptic character and the Witten genus*, Algebraic topology (Evanston, IL, 1988) Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 281–289. MR**1022688**, DOI 10.1090/conm/096/1022688 - Douglas C. Ravenel and W. Stephen Wilson,
*The Morava $K$-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture*, Amer. J. Math.**102**(1980), no. 4, 691–748. MR**584466**, DOI 10.2307/2374093 - Graeme Segal,
*Elliptic cohomology (after Landweber-Stong, Ochanine, Witten, and others)*, Astérisque**161-162**(1988), Exp. No. 695, 4, 187–201 (1989). Séminaire Bourbaki, Vol. 1987/88. MR**992209** - N. E. Steenrod,
*Cohomology operations*, Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. MR**0145525** - Edward Witten,
*Elliptic genera and quantum field theory*, Comm. Math. Phys.**109**(1987), no. 4, 525–536. MR**885560**, DOI 10.1007/BF01208956 - Edward Witten,
*The index of the Dirac operator in loop space*, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 161–181. MR**970288**, DOI 10.1007/BFb0078045

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**114**(1992), 243-250 - MSC: Primary 55P35; Secondary 19L99, 55N20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1079897-6
- MathSciNet review: 1079897