Bifurcation of limit cycles: geometric theory
HTML articles powered by AMS MathViewer
- by L. M. Perko
- Proc. Amer. Math. Soc. 114 (1992), 225-236
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086341-1
- PDF | Request permission
Abstract:
Multiple limit cycles play a basic role in the theory of bifurcations. In this paper we distinguish between singular and nonsingular, multiple limit cycles of a system defined by a one-parameter family of planar vector fields. It is shown that the only possible bifurcation at a nonsingular, multiple limit cycle is a saddle-node bifurcation and that locally the resulting stable and unstable limit cycles expand and contract monotonically as the parameter varies in a certain sense. Furthermore, this same type of geometrical behavior occurs in any one-parameter family of limit cycles experiencing a saddle-node type bifurcation except possibly at a finite number of points on the multiple limit cycle.References
- A. A. Andronov et al., Theory of bifurcations of dynamical systems on a plane, Kefer Press, Jerusalem, 1971.
T. R. Blows and L. M. Perko, Bifurcation of limit cycles from centers, S.I.A.M. J. Math. Anal.submitted.
- Carmen Chicone and Marc Jacobs, Bifurcation of limit cycles from quadratic isochrones, J. Differential Equations 91 (1991), no. 2, 268–326. MR 1111177, DOI 10.1016/0022-0396(91)90142-V
- Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633
- G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. of Math. (2) 57 (1953), 15–31. MR 53301, DOI 10.2307/1969724
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2 L. M. Perko, Differential equations and dynamical systems, Texts in Appl. Math., vol. 7, Springer-Verlag, New York, 1990.
- L. M. Perko, Global families of limit cycles of planar analytic systems, Trans. Amer. Math. Soc. 322 (1990), no. 2, 627–656. MR 998357, DOI 10.1090/S0002-9947-1990-0998357-4
- L. M. Perko, Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane, J. Differential Equations 18 (1975), 63–86. MR 374552, DOI 10.1016/0022-0396(75)90081-9 H. Poincaré, Mémorie sur les courbes définies par une equation différentielle, J. Mathématiques 7 (1881), 375-422; Oeuvre, Gauthier-Villar, Paris, 1880-1890, pp. 1-221.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 225-236
- MSC: Primary 34C23; Secondary 34C05, 34C25
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086341-1
- MathSciNet review: 1086341