On the joint spectrum and $H^ \infty$-functional calculus for pairs of commuting contractions
HTML articles powered by AMS MathViewer
- by Alfredo Octavio
- Proc. Amer. Math. Soc. 114 (1992), 497-503
- DOI: https://doi.org/10.1090/S0002-9939-1992-1069294-1
- PDF | Request permission
Abstract:
In this paper we show the existence of a pair of commuting completely nonunitary contractions $(S,T)$ on a Hilbert space, whose joint Taylor spectrum contains the torus, such that there is a bounded analytic function $h$ on the bidisk with $h(S,T) = 0$.References
- Constantin Apostol, Ultraweakly closed operator algebras, J. Operator Theory 2 (1979), no. 1, 49–61. MR 553863
- Hari Bercovici, Operator theory and arithmetic in $H^\infty$, Mathematical Surveys and Monographs, vol. 26, American Mathematical Society, Providence, RI, 1988. MR 954383, DOI 10.1090/surv/026
- Hari Bercovici, Ciprian Foias, and Carl Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conference Series in Mathematics, vol. 56, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1985. MR 787041, DOI 10.1090/cbms/056 E. Briem, A. M. Davie, and B. K. Øksendal, Functional calculus for commuting contractions, J. London Math. Soc. (2) 7 (1973), 709-718.
- Bernard Chevreau and Carl Pearcy, On the structure of contraction operators. I, J. Funct. Anal. 76 (1988), no. 1, 1–29. MR 923042, DOI 10.1016/0022-1236(88)90046-8
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999, DOI 10.1017/CBO9780511566134
- Raúl E. Curto, Applications of several complex variables to multiparameter spectral theory, Surveys of some recent results in operator theory, Vol. II, Pitman Res. Notes Math. Ser., vol. 192, Longman Sci. Tech., Harlow, 1988, pp. 25–90. MR 976843
- A. J. Lohwater and George Piranian, Bounded analytic functions with large cluster sets, Ann. Acad. Sci. Fenn. Ser. A. I. 499 (1971), 7. MR 293099
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157 —, Function theory on polydisks, Benjamin, New York, 1969.
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 497-503
- MSC: Primary 47A13; Secondary 47A10, 47A60
- DOI: https://doi.org/10.1090/S0002-9939-1992-1069294-1
- MathSciNet review: 1069294