Genus two Heegaard splittings
HTML articles powered by AMS MathViewer
- by Joel Hass
- Proc. Amer. Math. Soc. 114 (1992), 565-570
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070519-7
- PDF | Request permission
Abstract:
It is shown that a $3$-manifold has a finite number of genus two Heegaard splittings. A corollary is that the mapping class group is finite if the manifold is non-Haken.References
- Michael T. Anderson, Curvature estimates for minimal surfaces in $3$-manifolds, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 1, 89–105. MR 803196
- Francis Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), no. 3, 305–314 (French). MR 710104, DOI 10.1016/0040-9383(83)90016-2
- Francis Bonahon and Jean-Pierre Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 451–466 (1984) (French). MR 740078
- Michel Boileau and Jean-Pierre Otal, Groupe des difféotopies de certaines variétés de Seifert, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 1, 19–22 (French, with English summary). MR 849619
- Hyeong In Choi and Richard Schoen, The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Invent. Math. 81 (1985), no. 3, 387–394. MR 807063, DOI 10.1007/BF01388577
- John L. Friedman and Donald M. Witt, Homotopy is not isotopy for homeomorphisms of $3$-manifolds, Topology 25 (1986), no. 1, 35–44. MR 836722, DOI 10.1016/0040-9383(86)90003-0
- Wolfgang Haken, Some results on surfaces in $3$-manifolds, Studies in Modern Topology, Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1968, pp. 39–98. MR 0224071
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497 J. Hass and P. Scott, Homotopy and isotopy of $3$-manifolds, preprint.
- Klaus Johannson, Heegaard surfaces in Haken $3$-manifolds, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 1, 91–98. MR 1027902, DOI 10.1090/S0273-0979-1990-15910-5
- J. Milnor, A unique decomposition theorem for $3$-manifolds, Amer. J. Math. 84 (1962), 1–7. MR 142125, DOI 10.2307/2372800
- Jon T. Pitts and J. H. Rubinstein, Existence of minimal surfaces of bounded topological type in three-manifolds, Miniconference on geometry and partial differential equations (Canberra, 1985) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 10, Austral. Nat. Univ., Canberra, 1986, pp. 163–176. MR 857665
- Jon T. Pitts and J. H. Rubinstein, Equivariant minimax and minimal surfaces in geometric three-manifolds, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 303–309. MR 940493, DOI 10.1090/S0273-0979-1988-15652-2 M. Sakuma, Manifolds with infinitely many non-isotopic Heegaard splittings of minimal genus, preprint.
- Peter Scott, There are no fake Seifert fibre spaces with infinite $\pi _{1}$, Ann. of Math. (2) 117 (1983), no. 1, 35–70. MR 683801, DOI 10.2307/2006970 W. Thurston, The geometry and topology of $3$-manifolds, Princeton Univ. Lecture Notes, 1978. —, An orbifold theorem for $3$-manifolds, preprint. K. Uhlenbeck, Minimal embeddings of surfaces in hyperbolic $3$-manifolds, preprint, 1981.
- Friedhelm Waldhausen, Recent results on sufficiently large $3$-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 21–38. MR 520520
- Brian White, The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J. 40 (1991), no. 1, 161–200. MR 1101226, DOI 10.1512/iumj.1991.40.40008
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 565-570
- MSC: Primary 57N10; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070519-7
- MathSciNet review: 1070519