The minimal support for a continuous functional on a function space
HTML articles powered by AMS MathViewer
- by Kazuhiko Morishita
- Proc. Amer. Math. Soc. 114 (1992), 585-587
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070528-8
- PDF | Request permission
Abstract:
Let ${C_p}(X)$ be the function space with the pointwise convergent topology over a Tychonoff space $X$ and $\xi$ a continuous real-valued function on ${C_p}(X)$. A closed subset $S$ of $X$ is called a support for $\xi$ if $\xi (f) = \xi (g)$ holds for any pair $(f,g)$ of elements of ${C_p}(X)$ such that ${f_{|S}} = {g_{|S}}$. It is proven that the minimal support for any real-valued continuous function on the space ${C_p}(X)$ exists.References
- A. V. Arhangel’skii, Function spaces with the pointwise topology. I, General Topology, Function Spaces and Dimension, Moscow Univ., 1985, pp. 3-66. (Russian)
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 585-587
- MSC: Primary 54C05; Secondary 54C30, 54C35
- DOI: https://doi.org/10.1090/S0002-9939-1992-1070528-8
- MathSciNet review: 1070528