UNIFORM CONVERGENCE OF ERGODIC LIMITS AND APPROXIMATE SOLUTIONS

SEN-YEN SHAW

(Communicated by Paul S. Muhly)

Abstract. Let \(A \) be a densely defined closed (linear) operator, and \(\{A_\alpha\} \), \(\{B_\alpha\} \) be two nets of bounded operators on a Banach space \(X \) such that \(\|A_\alpha\| = O(1) \), \(A_\alpha A \subset AA_\alpha \), \(\|AA_\alpha\| = o(1) \), and \(B_\alpha A \subset AB_\alpha = I - A_\alpha \). Denote the domain, range, and null space of an operator \(T \) by \(D(T) \), \(R(T) \), and \(N(T) \), respectively, and let \(P \) (resp. \(B \)) be the operator defined by \(Px = \lim_\alpha A_\alpha x \) (resp. \(By = \lim_\alpha B_\alpha y \)) for all those \(x \in X \) (resp. \(y \in R(A) \)) for which the limit exists. It is shown in a previous paper that \(D(P) = N(A) \cap R(A) \), \(R(P) = N(A) \), \(D(B) = A(D(A) \cap R(A)) \), \(R(B) = D(A) \cap R(A) \), and that \(B \) sends each \(y \in D(B) \) to the unique solution of \(Ax = y \) in \(R(A) \). In this paper, we prove that \(D(P) = X \) and \(\|P - B\| \to 0 \) if and only if \(\|B_\alpha D(B) - B\| \to 0 \), if and only if \(\|B_\alpha D(B)\| = O(1) \), if and only if \(R(A) \) is closed. Moreover, when \(X \) is a Grothendieck space with the Dunford-Pettis property, all these conditions are equivalent to the mere condition that \(D(P) = X \). The general result is then used to deduce uniform ergodic theorems for \(n \)-times integrated semigroups, \((Y) \)-semigroups, and cosine operator functions.

1. Introduction

Let \(X \) be a Banach space and \(B(X) \) be the set of all bounded linear operators on \(X \). Let \(A : D(A) \subset X \to X \) be a densely defined closed linear operator, and let \(\{A_\alpha\} \) and \(\{B_\alpha\} \) be two nets in \(B(X) \) satisfying the conditions:

\begin{enumerate}
\item[(C1)] \(\|A_\alpha\| = O(1) \), i.e., there exist \(M \) and \(\alpha_0 \) such that \(\|A_\alpha\| \leq M \) for \(\alpha \geq \alpha_0 \),
\item[(C2)] \(R(B_\alpha) \subset D(A) \) and \(B_\alpha A \subset AB_\alpha = I - A_\alpha \) for all \(\alpha \),
\item[(C3)] \(R(A_\alpha) \subset D(A) \) and \(A_\alpha A \subset AA_\alpha \), and \(\|AA_\alpha\| \to 0 \).
\end{enumerate}

These two systems of operators have been employed in our earlier papers [13] and [14] to formulate an abstract mean ergodic theorem and to produce approximate solutions of the functional equation \(Ax = y \).

Let \(P \) be the operator defined by \(Px := s\text{-}\lim_\alpha A_\alpha x \) for \(x \in D(P) := \{x \in X ; s\text{-}\lim_\alpha A_\alpha x \text{ exists}\} \), and let \(B \) be the operator defined by \(By := s\text{-}\lim_\alpha B_\alpha y \) for \(y \in D(B) := \{y \in R(A) ; s\text{-}\lim_\alpha B_\alpha y \text{ exists}\} \). The following two...
strong convergence theorems were proved in [13]: (i) P is a bounded linear projection with range $R(P) = N(A)$, null space $N(P) = \overline{R(A)}$, and domain $D(P) = N(A) \oplus \overline{R(A)} = \{x \in X; \{A_\alpha x\} \text{ has a weak cluster point}\}$; (ii) B is the inverse operator of the restriction $A|\overline{R(A)}$ of A to $\overline{R(A)}$; it has range $R(B) = D(A) \cap \overline{R(A)}$ and domain $D(B) = A(D(A) \cap \overline{R(A)}) = \{y \in \overline{R(A)}; \{B_\alpha y\} \text{ has a weak cluster point}\}$. Moreover, for any given $y \in D(B)$, the vector By is the unique solution of the functional equation $Ax = y$ that lies in $\overline{R(A)}$. This closed operator B is called the inner inverse of A.

Actually, the convergence of $B_\alpha y$ to $By = (A|\overline{R(A)})^{-1}y$ for $y \in D(B)$ is seen from the following computation using (C2) and (i).

\[
B_\alpha y - By = B_\alpha AB_\alpha y - By = (B_\alpha A - I)By
\]

\[
= \|A_\alpha By\| = \|(A_\alpha - P)By\| \to 0.
\]

{\{A_\alpha\}} is said to be strongly ergodic if $D(P) = X$. In this case, we have $R(A) = A(D(A) \cap X) = A(D(A) \cap [N(A) \oplus \overline{R(A)}]) = A(D(A) \cap \overline{R(A)}) = D(B)$.

Conversely, the equality $D(B) = R(A)$ implies the strong ergodicity because, if not, there would be a $z \in D(A) \setminus D(P)$ and an $x \in D(A) \cap \overline{R(A)}$ such that $Az = Ax$, which leads to $z = (z - x) + x \in N(A) \oplus \overline{R(A)} = D(P)$, a contradiction.

The purpose of this paper is to prove the following two uniform convergence theorems for the two systems {\{A_\alpha\}} and {\{B_\alpha\}}. Applications to concrete examples are to be given in §3.

Theorem 1. Let A be a densely defined closed linear operator in X, and let {\{A_\alpha\}} and {\{B_\alpha\}} be two nets in $B(X)$ which satisfy (C1), (C2), and (C3). Then the following statements are equivalent:

1. $\|A_\alpha|D(P) - P\| \to 0$,
2. $D(P) = X$ and $\|A_\alpha - P\| \to 0$,
3. $R(A)$ is closed,
4. $R(A^2)$ is closed,
5. $X = N(A) \oplus R(A)$,
6. $\|B_\alpha R(A)\| = O(1)$,
7. B is bounded and $\|B_\alpha|D(B) - B\| \to 0$.

Moreover, if (1)–(7) hold, then $D(B) = R(A^2) = R(A)$, $\|A_\alpha - P\| \leq (M + 1) \times \|A_\alpha A_\alpha\| \|B\|$ and $\|B_\alpha|D(B) - B\| \leq (M + 1) \|A_\alpha\| \|B\|^2$.

A Banach space X is called a Grothendieck space if every weakly* convergent sequence in the dual space X^* is weakly convergent, and is said to have the Dunford-Pettis property if $\langle x_n, x_n^* \rangle \to 0$ whenever $x_n \to 0$ weakly in X and $x_n^* \to 0$ weakly in X^*. Among examples of Grothendieck spaces with the Dunford-Pettis property are L^∞, $B(s, \Sigma)$, $H^\infty(D)$, etc. (See [7].)

Theorem 2. Let X be a Grothendieck space with the Dunford-Pettis property, and let A, {\{A_\alpha\}}, and {\{B_\alpha\}} be as in Theorem 1. If {\{A_\alpha\}} is strongly ergodic, then it is uniformly ergodic.

Thus, in this case the conditions (1)–(7) all are equivalent to each of $D(P) = X$ and $D(B) = R(A)$. In view of the next theorem, we have another equivalent condition: $\overline{R(A^*)} = w^* - \text{cl}(R(A^*))$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 3. Let X be a Grothendieck space, and let A, $\{A_\alpha\}$, and $\{B_\alpha\}$ be as in Theorem 1. Then $\{A_\alpha\}$ is strongly ergodic if and only if $\overline{R(A^*)} = w^* - \text{cl}(R(A^*))$.

2. Proof of Main Result

Proof of Theorem 1. We prove the implication s: (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (2), (1) \Rightarrow (3) \Rightarrow (6) \Rightarrow (1) + (7).

(2) \Rightarrow (3) (C3) implies that $\overline{R(A)}$ is invariant under A_α and $PA = 0$, so that $\|A_\alpha|\overline{R(A)}\| = \|(A_\alpha - P)|\overline{R(A)}\| \leq \|A_\alpha - P\| \rightarrow 0$. Hence for some α, $(A_\alpha - I)|\overline{R(A)}$ is invertible and so $\overline{R(A)} \subset R(A_\alpha - I) \subset R(A)$.

(3) \Rightarrow (4). By the open mapping theorem (cf. [15, p. 213]), there is some $m > 0$ such that for each $x \in R(A)$ is equal to Ay for some $y \in D(A)$ with $\|y\| \leq m\|x\|$. Hence $\|A_\alpha x\| = \|AA_\alpha y\| \leq \|A_\alpha\|\|x\|$, showing that $\|A_\alpha|\overline{R(A)}\| \leq m\|A_\alpha\| \rightarrow 0$ and so $(A_\alpha - I)|\overline{R(A)}$ is invertible for some α. This, together with (C2) and (C3), implies that $R(A) = (A_\alpha - I)AD(A) = A(A_\alpha - I)D(A) \subset A(D(A) \cap R(A)) = R(A^2)$. Hence $R(A^2) = R(A)$ and is closed.

(4) \Rightarrow (5). If $x \in D(A)$, then $Ax = \lim_{a \rightarrow \infty} A_\alpha x - A(A_\alpha - I)x = -\lim A_\alpha x \in R(A^2) = R(A^2)$. This shows that $R(A) = R(A^2)$ is closed and $D(A) \subset N(A) + R(A)$. Next, let $x \in X$, and let $\{x_\alpha\}$ be a sequence in $D(A)$ such that $x_\alpha \rightarrow x$. Then $A_\alpha x_\alpha \in D(A)$ and $(A_\alpha - I)x = \lim_{\alpha \rightarrow \infty}(A_\alpha - I)x_\alpha \in \overline{R(A)} = R(A)$ so that $x = A_\alpha x - (A_\alpha - I)x \in D(A) + R(A) \subset N(A) + R(A)$. Hence $X = N(A) + R(A)$. To see that this is a direct sum, let $x \in N(A) \cap R(A)$. Then there is a y such that $Ay = x \in N(A) \subset N(A_\alpha - I)$ for all α. But then $x = A_\alpha x = A_\alpha Ay \rightarrow 0$.

(5) \Rightarrow (2). The closedness of A and assumption (5) imply $R(A)$ is closed (see [16, p. 217]). Then, as was shown in (3) \Rightarrow (4), we have $\|(A_\alpha - P)|\overline{R(A)}\| = \|A_\alpha|\overline{R(A)}\| \leq m\|A_\alpha\| \rightarrow 0$. Because $(A_\alpha - P)|N(A) = 0$, it follows that $\|A_\alpha - P\| \rightarrow 0$.

(1) \Rightarrow (3). Since $A_\alpha A \subset A A_\alpha$, the space $D(P) = N(A) + \overline{R(A)}$ is invariant under A_α, and $A|D(P)$ is a densely defined closed operator in $D(P)$. Applying (2) \Rightarrow (5) to $\{A_\alpha |D(P)\}$ and $A|D(P)$, we infer that $D(P) = N(A|D(P)) \oplus R(A|D(P))$. Since $N(A|D(P)) = N(A)$ and $R(A|D(P)) \subset R(A)$, it follows from the two expressions of $D(P)$ that $\overline{R(A)} = R(A|D(P))$ and hence $\overline{R(A)} = R(A)$.

(3) \Rightarrow (6). If $R(A)$ is closed, then as shown in (3) \Rightarrow (4), we have $R(A^2) = R(A)$, so that $D(B) = A(D(A) \cap R(A)) = R(A^2) = R(A)$ is closed. Since $B_\alpha y \rightarrow By$ for all $y \in D(B)$, the uniform boundedness principle implies (6).

(6) \Rightarrow (1) + (7). (6) implies that B is bounded and hence $R(A|D(P)) = A(D(A) \cap \overline{R(A)}) = D(B)$ is closed. An application of (3) \Rightarrow (2) to $\{A_\alpha |D(P)\}$ asserts that $\|A_\alpha |D(P) - P\| \rightarrow 0$, from which, together with (7), we see that $\|B_\alpha |D(B) - B\| \leq \|A_\alpha |D(P) - P\| \|B\| \rightarrow 0$.

Finally, if (1)–(7) hold, then for any $x \in X$, we have $x - Px \in R(A) = R(A^2) = D(B)$ so that $AB(x - Px) = (x - Px)$ and

$$\|A_\alpha x - Px\| = \|A_\alpha (x - Px)\| = \|A_\alpha AB(I - P)x\| \leq \|AA_\alpha\|\|B\||(M + 1)\|x\|.$$
Hence $\|A_\alpha - P\| \leq (M + 1)\|AA_\alpha\|\|B\|$ and $\|B_\alpha |D(B) - B\| \leq (M + 1)\|AA_\alpha\|\|B\|^2$.

To prove Theorems 2 and 3 we need the following lemma.
Lemma. If \(A, \{A_\alpha\}, \) and \(\{B_\alpha\} \) satisfy conditions (C1), (C2), and (C3), then \(A^*, \{A^*_\alpha\}, \) and \(\{B^*_\alpha\} \) also satisfy these conditions.

Proof. It suffices to show that if \(E \in B(X) \) is such that \(R(E) \subset D(A) \) and \(EA \subset AE \), then \(R(E^*) \subset D(A^*) \) and \(E^*A^* \subset A^*E^* = (AE)^* \). If \(x^* \in D(A^*) \), then \(\langle Ax, E^*x^* \rangle = \langle EAx, x^* \rangle = \langle x, E^*A^*x^* \rangle \) for all \(x \in D(A) \), so that \(E^*x^* \in D(A^*) \) and \(A^*E^*x^* = E^*A^*x^* = (AE)^*x^* \). Hence \(E^*A^* \subset A^*E^* \). To show \(R(E^*) \subset D(A^*) \) and \(A^*E^* = (AE)^* \), we use the fact that \(A^* \) is weakly* densely defined and \(w^* - w^* \)-closed. For any \(x^* \in X^* \), let \(\{x^*_n\} \) be a net in \(D(A^*) \) such that \(x^*_n \to x^* \) weakly*. Then \(E^*x^*_n \) and \(A^*E^*x^*_n \) converge weakly* to \(E^*x^* \) and \((AE)^*x^* \), respectively. This implies that \(E^*x^* \in D(A^*) \) and \(A^*E^*x^* = (AE)^*x^* \).

Proof of Theorem 2. Since \(A_\alpha|P(R) = I \), we may assume \(A_\alpha \to 0 \) strongly and show that \(\|A_\alpha\| \to 0 \), without loss of generality. Take a sequence \(A_n \equiv A_{\alpha_n} \to 0 \). Then \(A_nx \) converges strongly to 0 for all \(x \in X \). This implies that \(\{A^*_n x^*_n\} \) converges weakly* and hence weakly to 0 whenever \(\{x^*_n\} \) is bounded. In particular, \(\{A^*_n x^*_n\} \to 0 \) weakly for all \(x^* \in X^* \). The convergence actually holds in the strong topology, by the strong ergodic theorem (applied to \(\{A^*_n\} \)). This fact in turn implies that \(A_n x_n \) converges weakly* to 0 whenever \(\{x_n\} \) is bounded. Now, it follows from a lemma of Lotz [7] that \(\|A^*_n\| \to 0 \). Thus \(I - A_m \) is invertible for a sufficiently large \(m \). By (C2) and (C3) we obtain that

\[
\|A_n\| = \|A_n(I - A_m)(I - A_m)^{-1}\| = \|A_n A B_m (I - A_m)^{-1}\| \\
\leq \|A A_n\| \|B_m\| \|(I - A_m)^{-1}\| \to 0 \quad \text{as } n \to \infty.
\]

Application of Theorem 1 to \(\{A_n\} \) and \(\{A_\alpha\} \) shows first that \(R(A) \) is closed and then that \(\|A_\alpha\| \to 0 \).

Proof of Theorem 3. If \(D(P) = X \), then for every \(x^* \in X^* \) we have

\[
\lim_{n \to \infty} A^*_n x^* = \lim_{n \to \infty} A^*_\alpha_n x^* = P^* x^*,
\]

where \(\{A_\alpha_n\} \) is any subsequence of \(\{A_\alpha\} \). The strong ergodic theorem applied to \(\{A^*_\alpha_n\} \), shows that \(\lim_{n \to \infty} A^*_\alpha_n x^* \) for all \(x^* \in X^* \), \(N(P^*) = \overline{R(A^*)} \). Hence \(\overline{R(A^*)} = R(P)^\perp = N(A)^\perp = [^\perp R(A^*^\perp)]^\perp = w^*-\text{cl}(R(A^*)). \)

Conversely, if \(\overline{R(A^*)} = w^*-\text{cl}(R(A^*)) \), then \(D(P)^\perp = \{N(A) \oplus \overline{R(A)}\}^\perp = [^\perp R(A^*)]\perp \cap R(A)^\perp = w^*-\text{cl}(R(A^*)) \cap N(A^*) = \overline{R(A^*)} \cap N(A^*) = \{0\} \), again following from the strong ergodic theorem applied to \(\{A^*_\alpha\} \). Since \(D(P) \) is closed, it must be equal to \(X \).

3. Examples

We consider applications to \(n \)-times integrated semigroups, \((Y) \)-semigroups, and cosine operator functions.

3.1. \(n \)-times integrated semigroups. Let \(n \) be a positive integer. A strongly continuous family \(\{T(t); t \geq 0\} \) in \(B(X) \) is called an \(n \)-times integrated semigroup (see [1, 15]) if \(T(0) = I \) and

\[
T(t)T(s) = \frac{1}{(n - 1)!} \left(\int_s^{t+s} (t + s - r)^{n-1} T(r) \, dr - \int_0^s (t + s - r)^{n-1} T(r) \, dr \right) \\
(s, t \geq 0).
\]
A \(C_0 \)-semigroup is called an \(o \)-times integrated semigroup. It is known that the integrals over \([0, t], \; t \geq 0\), of an \(n \)-times (\(n \geq 0 \)) integrated semigroup form an \((n + 1)\)-times integrated semigroup, but not conversely.

\(T(\cdot) \) is called nondegenerate if \(T(t)x = 0 \) for all \(t > 0 \) implies \(x = 0 \). It is called exponentially bounded if there are \(M \geq 0, \; w \in \mathbb{R} \) such that \(\|T(t)\| \leq Me^{wt} \) for all \(t \geq 0 \). If \(T(\cdot) \) is nondegenerate and exponentially bounded, then there exists a unique closed operator \(A \) satisfying \((w, \infty) \subset \rho(A) \) and \((\lambda - A)^{-1}x = \int_0^\infty e^{-\lambda t}T(t)dt \) for \(x \in X \) and \(\lambda > w \). This operator is called the generator of \(T(\cdot) \). It is not necessarily densely defined. We only consider the case when \(A \) is densely defined. This includes all \(C_0 \)-semigroups.

It is known \([1, \text{Proposition 3.3}]\) that \(\int_0^t T(s)x\,ds \in D(A) \) and \(A \int_0^t T(s)x\,ds = T(t)x = (t^n/n!x) \) for all \(x \in X \), and \(\int_0^t T(s)Ax\,ds = T(t)x - (t^n/n!)x \) for all \(x \in D(A) \). Since \(A \) is closed, taking integration gives that

\[
\int_0^t T(s)x\,ds - (t^{n+1}/(n+1)!x) = \begin{cases}
A\int_0^t T(u)dudu & \text{for } x \in X, \\
\int_0^t T(u)Ax\,du & \text{for } x \in D(A).
\end{cases}
\]

Let \(A_t := (n + 1)!t^{-n-1}\int_0^t T(s)\,ds \) and \(B_t := -(n + 1)!t^{-n-1}\int_0^t T(u)dudu \) for \(t > 0 \). Then \(B_tA \subset AB_t = I - A_t \) and \(A_tA \subset AA_t = (n+1)!T(t)/t^{n+1}-(n+1)I/t \). Suppose \(\|T(t)\| = O(t^n) \) (\(t \to \infty \)). Then \(A, \{A_t\} \), \(\{B_t\} \) satisfy (C1), (C2), and (C3) as \(t \to \infty \). On the other hand, the systems \(\{\lambda(\lambda - A)^{-1}\}, \{-(\lambda - A)^{-1}\} \) clearly satisfy (C1), (C2), and (C3) as \(\lambda \to 0 \) too. Hence the strong ergodic theorem and the theorems in §1 are applicable to \(\{A_t\} \) with \(\{B_t\} \) and \(\{\lambda(\lambda - A)^{-1}\} \) with \(\{-(\lambda - A)^{-1}\} \), and the next two theorems follow immediately.

Theorem 4. Let \(\{T(t); \; t \geq 0\} \) be a nondegenerate \(n \)-times integrated semigroup with generator \(A \) densely defined. Suppose \(\|T(t)\| = O(t^n) \) (\(t \to \infty \)). Let \(A_t \) and \(B_t \) be as previously defined. Then \(\lim_{t \to \infty} A_t x \) and \(\lim_{\lambda \to 0^+} \lambda(\lambda - A)^{-1}x \) exist and are equal if one of them exists, and the limits define a bounded linear projection \(P \) onto \(N(A) \) along \(R(A) \). For \(y \in R(A) \), \(\lim_{t \to \infty} B_t y \) and \(\lim_{\lambda \to 0^+} (A - \lambda)^{-1}y \) exist and are equal if one of them exists, and the limits define an operator \(B \) which sends each \(y \in A(D(A) \cap R(A)) \) to the unique solution \(x = By \) of \(Ax = y \) in \(R(A) \).

Theorem 5. Under the hypothesis of Theorem 4, the following statements are equivalent:

1. \(\|A_t - P\| \to 0 \) as \(t \to \infty \),
2. \(\|\lambda(\lambda - A)^{-1} - P\| \to 0 \) as \(t \to 0^+ \),
3. \(R(A) \) is closed,
4. \(\|B_t\|R(A)\| = O(1) \) (\(t \to \infty \)),
5. \(\|B_t\|R(A) - B\| \to 0 \) as \(t \to \infty \),
6. \(\|\lambda - A\| - R(A) - B\| \to 0 \) as \(\lambda \to 0^+ \).

Moreover, when \(X \) is a Grothendieck space with the Dunford-Pettis property, \(D(P) = X \) and \(R(A^*) = w^*-\text{cl}(R(A^*)) \) are two more equivalent conditions.

Remarks. (i) When (1)-(6) hold, we have \(\|A_t - P\| = O(1/t) \), \(\|B_t\|R(A) - B\| = O(1/t) \) (\(t \to \infty \)), and \(\|\lambda(\lambda - A)^{-1} - P\| = O(\lambda) \), \(\|\lambda - A\| - R(A) - B\| = O(\lambda) \), \(\lambda \to 0^+ \).
(ii) In the case $n = 0$, Theorem 4 is well known (see [3, pp. 58–60] for the first part, and [4] for the second part), the equivalence of (1), (2), and (3) in Theorem 5 is proved in [6] (see also [10]), the equivalence of strong ergodicity and $R(A^*) = w^*\text{-cl}(RA^*)$ in a Grothendieck space is proved in [9], and the equivalence of strong ergodicity and uniform ergodicity in a Grothendieck space with the Dunford-Pettis property is proved in [7]. The theorems with $n \geq 1$ are new.

3.2. (Y)-semigroups. Let Y be a closed subspace of X^* such that the canonical imbedding of X into Y^* is isometric. A semigroup $\{T(t); t \geq 0\}$ of operators on X is called a (Y)-semigroup (cf. [8, 11]) if Y is invariant under $T^*(t)$ for all $t \geq 0$ and $T(\cdot)x$ is $\sigma(X, Y)$-continuous on $[0, \infty)$ and locally $\sigma(X, Y)$-Pettis integrable for all $x \in X$. The generator A of $T(\cdot)$ is defined by $Ax := \sigma(X, Y)\text{-lim}_{t \to 0^+} t^{-1}(T(t) - I)x$. A C_0-semigroup on X is a (X^*)-semigroup, and its dual semigroup is a (X)-semigroup. The tensor product $T(t)$ of two C_0-semigroups e^{tA} and e^{-tB} on X is a (Y)-semigroup on $B(X)$ for some suitable subspace Y of $B(X)^*$; its generator is the operator $A: C \to AC - CB$.

The strong convergence of ergodic limits of a (Y)-semigroup and that of approximate solutions of the corresponding equation $Ax = y$ have been discussed in [13, Example VI]. The result is the same as Theorem 4 with $n = 0$. By applying Theorems 1 and 2 one can easily see that Theorem 5 with $n = 0$ holds for (Y)-semigroups too. Since $S(t) := \int_{0}^{t} T(s) ds$, $t \geq 0$, forms a once-integrated semigroup, we can apply Theorems 4 and 5 to $S(\cdot)$ to obtain ergodic theorems for $(C, 2)$-means of $T(\cdot)$; they are Theorems 4 and 5 with $A_t = 2t^{-2} \int_{0}^{t} \int_{0}^{s} T(u) du ds$ and $B_t = -2t^{-2} \int_{0}^{t} \int_{0}^{u} T(v) dv ds$.

3.3. Cosine operator functions. A strongly continuous family $\{C(t); t \in \mathbb{R}\}$ in $B(X)$ is called a cosine operator function if $C(0) = I$ and $C(t + s) + C(t - s) = 2C(t)C(s), s, t \in \mathbb{R}$. The generator A, defined by $Ax := C''(0)x$, is a densely defined closed operator.

For $t > 0$ let

$$A_t := 2t^{-2} \int_{0}^{t} \int_{0}^{s} C(u) du ds$$

and

$$B_t = -2t^{-2} \int_{0}^{t} \int_{0}^{s} \int_{0}^{u} C(w) dw dv du ds.$$

Then we have $B_tA \subset AB_t \subset I_t - A$ and $A_tA \subset AA_t = 2t^{-2}(C(t) - I)$. The strong convergence of $A_t x$ and $B_t y$ as $t \to \infty$ has been discussed in [13, Example VII]. We now deduce from Theorems 1 and 2 the following theorem about uniform convergence.

Theorem 6. Suppose that $\| \int_{0}^{t} \int_{0}^{s} C(u) du ds \| = O(t^2)$ $(t \to \infty)$ and $\| C(t) \| = o(t^2)$ $(t \to \infty)$. Then, with A_t and B_t defined as above, the conclusion of Theorem 5 remains valid.

Concluding remark

Our Theorems 1, 2, and 3 can also be used to deduce uniform ergodic theorems for discrete semigroups (cf. [5, 7]) and uniform ergodic theorems for pseudoresolvents (cf. [10, 12]).
UNIFORM CONVERGENCE OF ERGODIC LIMITS

REFERENCES

7. H. P. Lotz, Tauberian theorems for operators on L^∞ and similar spaces, Functional Analysis: Surveys and Recent Results III, North-Holland, Amsterdam, 1984, pp. 117–133.

DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVERSITY, CHUNG-LI, TAIWAN, REPUBLIC OF CHINA