Uniform convergence of ergodic limits and approximate solutions
HTML articles powered by AMS MathViewer
- by Sen-Yen Shaw
- Proc. Amer. Math. Soc. 114 (1992), 405-411
- DOI: https://doi.org/10.1090/S0002-9939-1992-1089413-0
- PDF | Request permission
Abstract:
Let $A$ be a densely defined closed (linear) operator, and $\{ {A_\alpha }\}$, $\{ {B_\alpha }\}$ be two nets of bounded operators on a Banach space $X$ such that $||{A_\alpha }|| = O(1),{A_\alpha }A \subset A{A_\alpha },||A{A_\alpha }|| = o(1)$, and ${B_\alpha }A \subset A{B_\alpha } = I - {A_\alpha }$. Denote the domain, range, and null space of an operator $T$ by $D(T)$, $R(T)$, and $N(T)$, respectively, and let $P(\operatorname {resp} .B)$ be the operator defined by $Px = {\lim _\alpha }{A_\alpha }x(resp. By = {\lim _\alpha }{B_\alpha }y)$ for all those $x \in X(\operatorname {resp} .y \in \overline {R(A)} )$ for which the limit exists. It is shown in a previous paper that $D(P) = N(A) \oplus \overline {R(A)} ,R(P) = N(A),D(B) = A(D(A) \cap \overline {R(A)} ),R(B) = D(A) \cap \overline {R(A)}$, and that $B$ sends each $y \in D(B)$ to the unique solution of $Ax = y{\text { in }}\overline {R(A)}$. In this paper, we prove that $D(P) = X$ and $||{A_\alpha } - P|| \to 0$ if and only if $||{B_\alpha }|D(B) - B|| \to 0$, if and only if $||{B_\alpha }|D(B)|| = O(1)$, if and only if $R(A)$ is closed. Moreover, when $X$ is a Grothendieck space with the Dunford-Pettis property, all these conditions are equivalent to the mere condition that $D(P) = X$. The general result is then used to deduce uniform ergodic theorems for $n$-times integrated semigroups, $(Y)$-semigroups, and cosine operator functions.References
- Wolfgang Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), no. 3, 327–352. MR 920499, DOI 10.1007/BF02774144
- W. G. Dotson Jr., An application of ergodic theory to the solution of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 75 (1969), 347–352. MR 239438, DOI 10.1090/S0002-9904-1969-12166-X
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- Ulrich Krengel and Michael Lin, On the range of the generator of a Markovian semigroup, Math. Z. 185 (1984), no. 4, 553–565. MR 733775, DOI 10.1007/BF01236264
- Michael Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337–340. MR 417821, DOI 10.1090/S0002-9939-1974-0417821-6
- Michael Lin, On the uniform ergodic theorem. II, Proc. Amer. Math. Soc. 46 (1974), 217–225. MR 417822, DOI 10.1090/S0002-9939-1974-0417822-8
- Heinrich P. Lotz, Tauberian theorems for operators on $L^{\infty }$ and similar spaces, Functional analysis: surveys and recent results, III (Paderborn, 1983) North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam, 1984, pp. 117–133. MR 761376, DOI 10.1016/S0304-0208(08)71470-1
- Sen Yen Shaw, Ergodic properties of operator semigroups in general weak topologies, J. Functional Analysis 49 (1982), no. 2, 152–169. MR 680656, DOI 10.1016/0022-1236(82)90076-3
- Sen-Yen Shaw, Ergodic theorems for semigroups of operators on a Grothendieck space, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 4, 132–135. MR 711317
- Sen-Yen Shaw, Uniform ergodic theorems for locally integrable semigroups and pseudoresolvents, Proc. Amer. Math. Soc. 98 (1986), no. 1, 61–67. MR 848876, DOI 10.1090/S0002-9939-1986-0848876-0
- Sen-Yen Shaw and S. C. Lin, On the equations $Ax=q$ and $SX-XT=Q$, J. Funct. Anal. 77 (1988), no. 2, 352–363. MR 933974, DOI 10.1016/0022-1236(88)90092-4
- Sen-Yen Shaw, Asymptotic behavior of pseudoresolvents on some Grothendieck spaces, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 277–282. MR 944863, DOI 10.2977/prims/1195175201
- Sen-Yen Shaw, Mean ergodic theorems and linear functional equations, J. Funct. Anal. 87 (1989), no. 2, 428–441. MR 1026861, DOI 10.1016/0022-1236(89)90018-9
- Sen-Yen Shaw, Solvability of linear functional equations in Lebesgue spaces, Publ. Res. Inst. Math. Sci. 26 (1990), no. 4, 691–699. MR 1081512, DOI 10.2977/prims/1195170854
- Naoki Tanaka and Isao Miyadera, Some remarks on $C$-semigroups and integrated semigroups, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), no. 5, 139–142. MR 906977
- Angus Ellis Taylor and David C. Lay, Introduction to functional analysis, 2nd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR 564653
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 405-411
- MSC: Primary 47A35; Secondary 47D03
- DOI: https://doi.org/10.1090/S0002-9939-1992-1089413-0
- MathSciNet review: 1089413