Ruled submanifolds of finite type
HTML articles powered by AMS MathViewer
- by Franki Dillen
- Proc. Amer. Math. Soc. 114 (1992), 795-798
- DOI: https://doi.org/10.1090/S0002-9939-1992-1072333-5
- PDF | Request permission
Abstract:
We show that a ruled submanifold of finite type in a Euclidean space is a cylinder on a curve of finite type or a generalized helicoid.References
- Günter Aumann, Die Minimalhyperregelflächen, Manuscripta Math. 34 (1981), no. 2-3, 293–304 (German, with English summary). MR 620454, DOI 10.1007/BF01165542
- J. M. Barbosa, M. Dajczer, and L. P. Jorge, Minimal ruled submanifolds in spaces of constant curvature, Indiana Univ. Math. J. 33 (1984), no. 4, 531–547. MR 749313, DOI 10.1512/iumj.1984.33.33028
- D. E. Blair and J. R. Vanstone, A generalization of the helicoid, Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977) North-Holland, Amsterdam-New York, 1979, pp. 13–16. MR 574249
- Bang-Yen Chen, Total mean curvature and submanifolds of finite type, Series in Pure Mathematics, vol. 1, World Scientific Publishing Co., Singapore, 1984. MR 749575, DOI 10.1142/0065
- Bang-Yen Chen, Franki Dillen, Leopold Verstraelen, and Luc Vrancken, Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), no. 3, 447–453. MR 1083281, DOI 10.1017/S0004972700028616
- H. Blaine Lawson Jr., Complete minimal surfaces in $S^{3}$, Ann. of Math. (2) 92 (1970), 335–374. MR 270280, DOI 10.2307/1970625
- Yu. G. Lumiste, Die $n$-dimensionalen Minimalflächen mit einer $(n-1)$-dimensionalen asymptotischen Richtung in jedem Punkte, Tartu Riikl. Ül. Toimetised 62 (1958), 117–141 (Russian, with Estonian and German summaries). MR 0110057
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556 C. Thas, Minimal generalized ruled surfaces in the Euclidean space ${{\mathbf {E}}^m}$, Internal Report Seminar of Higher Geometry, State University of Ghent.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 795-798
- MSC: Primary 53C42; Secondary 53A25
- DOI: https://doi.org/10.1090/S0002-9939-1992-1072333-5
- MathSciNet review: 1072333