FRÉCHET VS. GÂTEAUX DIFFERENTIABILITY
OF LIPSCHITZIAN FUNCTIONS

MARIA GIERALTOWSKA-KEDZIERSKA AND F. S. VAN VLECK

(Communicated by R. Daniel Mauldin)

Abstract. Examples have been given of Lipschitzian functions that are Gâteaux-differentiable everywhere, but nowhere Fréchet-differentiable. One such example has been reported, mistakenly, in several papers as having domain in $L^2([0, \pi])$, when it should have been $L^1([0, \pi])$. We discuss this example.

The purpose of this note is to point out a misunderstanding that has been perpetuated about an example due to Sova [7]. In order to do this, we consider two mappings: (1) $f : L^1([0, \pi]) \rightarrow \mathbb{R}$ defined by $f(x) = \int_0^\pi x(t) \, dt$, and (2) $g : L^2([0, \pi]) \rightarrow \mathbb{R}$ defined by $g(x) = \int_0^\pi x(t) \, dt$. Clearly, g is the restriction of f to $L^2([0, \pi]) \subseteq L^1([0, \pi])$. The mapping f is an example of a Lipschitzian real-valued function that is everywhere Gâteaux-differentiable, but nowhere Fréchet-differentiable. In fact, f is a special case of a whole class of mappings, from the space $L^1(X, \Sigma, \mu)$ of all Σ-measurable, μ-integrable functions from X to \mathbb{R}, defined by Sova in [7] that are Gâteaux-differentiable, but not Fréchet-differentiable.

On the other hand, the function g is Fréchet-differentiable everywhere, but is given in some papers, in error, as an example of a mapping that is nowhere Fréchet-differentiable; cf. [3, p. 205], [4, p. 124], and [5, p. 125]. Earlier, Phelps [6, pp. 981–982] gave an example of an equivalent norm on l^1 that is Gâteaux-differentiable everywhere (except at the origin) and nowhere Fréchet-differentiable. Other examples of Lipschitzian real-valued functions that are nowhere Fréchet-differentiable were given by Aronszajn in [1]; his functions are on the space l^1.

In order to consider the differentiability of f and g, let $x, v \in L^1([0, \pi])$,
$v \neq 0$, $h > 0$. Then
\[
\lim_{h \to 0} \frac{1}{h} \int_0^\pi \left[\sin(x(t) + hv(t)) - \sin x(t) \right] dt
\]
\[
= \lim_{h \to 0} \int_0^\pi \sin \left(\frac{hv(t)}{2} \right) \cos \left(x(t) + \frac{hv(t)}{2} \right) dt
\]
\[
= \int_0^\pi v(t) \cos x(t) dt,
\]
since the integrand $((\sin \frac{hv(t)}{2})/(h/2)) \cos(x(t) + \frac{hv(t)}{2})$ is dominated by $v \in L^1([0, \pi])$. Hence, the Gâteau x derivative of the mapping f at x is $D_G f(x) = \cos x$. It is clear that the mapping g, which is the restriction of f to $L^2([0, \pi])$, is also Gâteaux-differentiable and that the Gâteaux derivative $D_G g(x) = \cos x$ is a continuous mapping from $L^2([0, \pi])$ into the norm topologies. Therefore, g is Fréchet-differentiable everywhere (see [2, Examples 1 and 2, pp. 18–22] for a more general class having the two properties described previously). Actually, in our case, g is uniformly Fréchet-differentiable. (Apply Taylor’s formula to the sine function, and conclude that $|\sin(a + b) - \sin a - b \cos a| = \frac{b^2}{2} \sin z$ for some z between a and $a + b$.

Thus,
\[
\int_0^\pi |\sin(x(t) + y(t)) - \sin x(t) - y(t) \cos x(t)| dt \leq \int_0^\pi \frac{1}{2} y(t)^2 dt = \frac{1}{2} ||y||^2.
\]
Hence, if $||y||_2 < 2\varepsilon$, we see that $|g(x + y) - g(x) - (y, \cos x)| \leq \varepsilon ||y||_2$.

To prove that f is not Fréchet-differentiable at any point $x \in L^1([0, \pi])$, we will follow Sova’s proof of [7, Theorem 2.1.6]. First, we show that for each $x \in L^1([0, \pi])$, there exists $v \in L^1([0, \pi])$ such that the Lebesgue measure of the set $\{t \in \mathbb{R} | 0 \leq t \leq \pi \text{ and } \sin(x(t) + v(t)) - \sin x(t) - v(t) \cos x(t) \neq 0\}$ is positive. If not, let q be a rational number and define v_q by $v_q(t) = q$ for all $t \in [0, \pi]$. Then $v_q \in L^1([0, \pi])$ and the set $N_q = \{t \in [0, \pi] | \sin(x(t) + q) - \sin x(t) = q \cos x(t)\}$ has Lebesgue measure 0. Hence, the union $N = \bigcup\{N_q | q \text{ rational}\}$ also has measure 0. Thus, for all rational numbers q and all $t \notin N$, $\sin(x(t) + q) - \sin x(t) = q \cos x(t)$. This is a contradiction since the mapping $q \cos x(t)$ is a linear function of q, but $\sin(x(t) + q) - \sin x(t)$ is not.

Next, choose $v_0 \in L^1([0, \pi])$ such that $\mu(\{t \in [0, \pi] | \sin(x(t) + v_0(t)) - \sin x(t) - v_0(t) \cos x(t) \neq 0\}) > 0$, where μ denotes Lebesgue measure. Then we can find $\alpha > 0$ such that the set $Z = \{t \in [0, \pi] | \sin(x(t) + v_0(t)) - \sin x(t) - v_0(t) \cos x(t) > \alpha\}$ satisfies $\mu(Z) > 0$. Further, there exists a β and a measurable subset Z_0 of Z such that $\mu(Z_0) > 0$ and $|v(t)| < \beta$ for $t \in Z_0$. Choose a sequence $\{Z_n\}_{n=1}^\infty$ of measurable subsets of Z_0 of Z such that $Z_{n+1} \subset Z_n$, $\mu(Z_n) > 0$ for $n = 1, 2, \ldots$, and $\bigcap_{n=1}^\infty Z_n = \emptyset$, and define a sequence $\{h_n\}_{n=1}^\infty$ of functions in $L^1([0, \pi])$ by
\[
h_n(t) = \begin{cases}
v_0(t) & \text{if } t \in Z_n \\
0 & \text{if } t \notin Z_n.
\end{cases}
\]
It is easy to check that $||h_n||_1 \to 0$ as $n \to \infty$, but
\[
\frac{1}{||h_n||_1} \int_0^\pi [\sin(x(t) + h_n(t)) - \sin x(t) - h_n(t) \cos x(t)] dt \geq \frac{\alpha \mu(Z_n)}{\beta \mu(Z_n)} = \frac{\alpha}{\beta} > 0.
\]
This shows that \(f \) is not Fréchet-differentiable at \(x \in L^1([0, \pi]) \).

Added in proof. It should be noted that the authors were not the first to discover the difficulties discussed in this paper. See R. R. Phelps, *Convex functions, monotone operators and differentiability*, Lecture Notes in Math., vol. 1364, Springer-Verlag, New York, 1989, p. 105. See also D. Preiss, *Fréchet derivatives of Lipschitz functions*, J. Funct. Anal. 91 (1990), 312–345, for a very strong positive result on differentiability of Lipschitz functions.

ACKNOWLEDGMENT

The authors would like to thank the referee for pointing out Phelps’ paper and the fact that \(g \) is uniformly Fréchet-differentiable.

REFERENCES

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045