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REMARKS ON QUASICONVEXITY AND STABILITY
OF EQUILIBRIA FOR VARIATIONAL INTEGRALS

ZHANG KEWEI

(Communicated by Barbara L. Keyfitz)

Abstract. Let F:RnN —> R be a uniformly strictly quasiconvex function (see

[3, 4]) of class C2+a , (0 < a < 1), and be of polynomial growth. Then

every smooth solution of the Euler-Lagrangian equation of the multiple integral

I{u; Í2) = fnF(Du(x))dx is a minimum of / for variations of sufficiently

small supports contained in Í2 .

This note establishes the stability of solutions to the equilibrium equations

for variational integrals under the constitutive assumption of uniformly strictly

quasiconvexity. We show that, for a class of quasiconvex integrands, all equi-

libria are strong local minimizers of sufficiently small support. This work could

be compared with that of Sivaloganathan [9] and Zhang [10], where the similar

problems are studied under the constitutive assumption of polyconvexity.

Let Q c R" be bounded and open. To any given map h:Q k R", we

associate an energy

(1) 7(m;Q)= / F(Du(x))dx.
Jo.

It is well known that any smooth minimizer of / satisfies the corresponding

Euler-Lagrange equations:

(2)
dF
OpiiDuix)) = 0,     for all x G Q, /'= 1,2, ... , N.

dxa

We define the set of admissible maps

(3)       AR(x0) = {u G W' -p(BR(x0) ; RN): u\da = un\aa, BR(x0) ce Q}

and consider the question of whether a given solution «0 of (2) is a strong

local minimizer of /, in the sense that «o minimizes / in AR(xo) for some

Xo G Q and for some jR > 0 (where we use Br(xq) , to denote the ball in R"

centered at xo with radius R > 0 ). We study this question in the case where

the integrand F is uniformly strictly quasiconvex and of class C2'a .

This problem has been studied by many authors (see, e.g., Cesari [2], Rund

[8] in the case that F is strictly convex and may depend on x, u as well, Sival-

oganathan [9] for polyconvexity case, and the references therein). However, in
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the present case nonuniqueness phenomenon of solutions may occur (see Ball

[1], John [6], Knops and Stuart [7]). It is interesting to study the behaviour of

other solutions of (2) than the minimizers of (1).

Throughout this paper, summation convention is applied. For a function

p. Y^Nn M r ( denote by DF(P), D2F(P) the first and the second order deriva-

tives of F while || • ||c denotes the supremum norm on the space of continuous

functions on some BR(x) c Q. We use various C to denote positive constants
independent of the variables.

Theorem. Suppose F:RNn h-> R is of class C2^f with 0 < a < 1 and satisfies

( 1 )  for some p > 2 + a,

\D2F(P + Q)- D2F(P)\ < d(l + \P\p-2~a + |ß|>-2-°)|ß|0 ;

(2) (uniformly strictly quasiconvexity (see Evans [3], Giaquinta and Módica

[5], Fusco and Hutchinson [4])). For every open bounded set G c R" ,

every P G R*" and every <f> G WQl -P(G; RN),

f [F(P) + v(\D<t>\p + \D<f>\2)]dx< [ F(P + D<f>) dx,
Jg Jg

where v > 0 is a constant.

Then, for every C2 solution uq of (2) and each xo G Q, there exists an

R > 0 with BR(xo) € Q, such that u0 is a strong minimizer of /{•; Br(xq))

on AR(x0).

Remark. It is easy to see that ( 1 ) implies

\F(P)\<C(l + \P\p)

for some C > 0.
In general, even the minimizers of (1) are only partially regular (see e.g., [3,

4, 5]), i.e., there exists an open subset Qo of Q with meas(Q\Qo) = 0, such

that u G C1 ,a(Qn ; RN), 0 < a < 1. Therefore, for partially regular solutions

of (2), we conclude that uq is locally stable on Qo, i.e., «o is a minimizer on

Ar(xo) for some R > 0, BR(xo) cc Qo .

Proof of the theorem. We prove the theorem by contradiction. For a fixed Xo G

Q, if the conclusion of the theorem is not true, then there exists a sequence

of positive Rj with Rj -* 0 as j —* oo, such that BRj(xo) 6 Q and u0

is not a minimizer in ARj(xo).   Hence there exists a sequence of functions

<Pi G W¿'p(BRj(x0)) suchthat

(4) /        F(Du0 + D(j>j)dx< í        F(Du0)dx.
JbR](x0) JBRj(xa)

Since «o is a solution of (2), we have, from (4),

0>  /        [F(Du0 + D(/>j) - F(Du0)]dx = [        DF(Du0)D<j>jdx
JBrAxq) Jbr(x0)

(5) ,
+ / / (1 - t)D2F(Du0 + tD<j>j)D<f>jD<j)j dtdx

JbrAxo) Jo
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and notice that, from the divergence theorem,

/ DF(DuQ)D(pjdx = 0,
JbRj(x0)

so that, in (5), we have

(6) 0 < - f [ (1 - t)D2F(Du0 + tD<t>j)D<¡>jD<j)j dtdx.
JbRj(x0)Jo

On the other hand, from (2),

v\        (\D<pj\2 + \Dct>j\p)dx
JBi.txo)

f       [F(Duo(x0)) + D<f>j) - F(Duo(x0))] dx
JbRj(x0)

= [        DF(Du0(x0))Dcj)jdx
JbRj(x0)

[ [ (1 - t)D2F(Du0(x0)) + tD<f>j)D<t>jD<t>jdtdx.
Jbrj(x0)Jo

Still from the divergence theorem, we have

/        DF(Duo(x0))D<j)j dx = 0,
JBb  (Xn)

'BRj(x0)

<

>BR(x0)

lBR¡[

+

IBRj(x0)

so that adding (6) to (7) gives

v f       (\D<f>j\p + \D<pj\2)dx
JbRj(x0)

< [ [ (1 - t)[D2F(Du0(x0) + tD<f>j)
Jbrax0) Jo

(8)

, {xo) '

- D2F(Du0(x) + tD(pj)]D(f>jD(j)j dtdx

[        C[l + |£>Mo(x)r2-a + \Du0(x0)\»-2-a
JbRj(x0)

+ \D<f>j\p-2-a]\Du0(x) - Du0(xo)\a\Dct>j\2 dx

< C(\\Du0\\c) [        \Du0(x0)-Du0(x)\a(l + \D(ßj\p-2)\D^\2dx
JbRj(x0)

< C ma\{\Duo(x0) - Du0(x)\a} [       (\D<j)j\p + \D<pj\2)dx.
x£B*j JbRj{x0)

Dividing both sides of (8) by JB¡¡ (xq)(\D(J)j\p + \D<f>j\2)dx we obtain

(9) v<C   max   {|£>Mo(x0) - £>w0(x)|a}.
xEBRj(x0)

Passing to the limit j —» oo, we have Rj —► 0 and

max   \{Duq(x0) - Du0(x)\} -> 0
x€BR]{x0)
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so that
v < lim C   max   {|Z>m0(x0) - Du0(x)\a} = 0.

;->oo     x€BRj (x0)

This contradicts to the assumption v > 0.

Remark. This result could be easily extended to the case where F depends ex-

plicitly on x, say, F = F(x, P). It seems to be unknown whether general weak

equilibria of (1) in Wx -P(Q: R^) are local minima for variations of sufficiently

small support near a Lebesgue point of Du.
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