REMARKS ON QUASICONEVEXITY AND STABILITY OF EQUILIBRIA FOR VARIATIONAL INTEGRALS

ZHANG KEWEI

(Communicated by Barbara L. Keyfitz)

Abstract. Let $F : \mathbb{R}^{nN} \rightarrow \mathbb{R}$ be a uniformly strictly quasiconvex function (see [3, 4]) of class C^{2+a}, $(0 < a < 1)$, and be of polynomial growth. Then every smooth solution of the Euler-Lagrangian equation of the multiple integral $I(u; \Omega) = \int_{\Omega} F(Du(x)) \, dx$ is a minimum of I for variations of sufficiently small supports contained in Ω.

This note establishes the stability of solutions to the equilibrium equations for variational integrals under the constitutive assumption of uniformly strictly quasiconvexity. We show that, for a class of quasiconvex integrands, all equilibria are strong local minimizers of sufficiently small support. This work could be compared with that of Sivaloganathan [9] and Zhang [10], where the similar problems are studied under the constitutive assumption of polyconvexity.

Let $\Omega \subset \mathbb{R}^n$ be bounded and open. To any given map $u : \Omega \rightarrow \mathbb{R}^N$, we associate an energy

$$I(u ; \Omega) = \int_{\Omega} F(Du(x)) \, dx.$$

It is well known that any smooth minimizer of I satisfies the corresponding Euler-Lagrange equations:

$$\frac{\partial}{\partial x^\alpha} \left[\frac{\partial F}{\partial P^\alpha_i}(Du(x)) \right] = 0, \quad \text{for all } x \in \Omega, \ i = 1, 2, \ldots, N.$$

We define the set of admissible maps

$$A_R(x_0) = \{ u \in W^{1,p}(B_R(x_0); \mathbb{R}^N) : u|_{\partial \Omega} = u_0|_{\partial \Omega}, \ B_R(x_0) \subset \subset \Omega \}$$

and consider the question of whether a given solution u_0 of (2) is a strong local minimizer of I, in the sense that u_0 minimizes I in $A_R(x_0)$ for some $x_0 \in \Omega$ and for some $R > 0$ (where we use $B_R(x_0)$, to denote the ball in \mathbb{R}^n centered at x_0 with radius $R > 0$). We study this question in the case where the integrand F is uniformly strictly quasiconvex and of class $C^{2+\alpha}$.

This problem has been studied by many authors (see, e.g., Cesari [2], Rund [8] in the case that F is strictly convex and may depend on x, u as well, Sivaloganathan [9] for polyconvexity case, and the references therein). However, in

Received by the editors October 23, 1989 and, in revised form, January 30, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 49B22, 35J50, 35B35.
This work is supported by the British Council.

©1992 American Mathematical Society
0002-9939/92 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
the present case nonuniqueness phenomenon of solutions may occur (see Ball [1], John [6], Knops and Stuart [7]). It is interesting to study the behaviour of other solutions of (2) than the minimizers of (1).

Throughout this paper, summation convention is applied. For a function \(F: \mathbb{R}^{Nn} \rightarrow \mathbb{R} \), denote by \(DF(P) \), \(D^2F(P) \) the first and the second order derivatives of \(F \) while \(\| \cdot \|_C \) denotes the supremum norm on the space of continuous functions on some \(\overline{\Omega} \). We use various \(C \) to denote positive constants independent of the variables.

Theorem. Suppose \(F: \mathbb{R}^{Nn} \rightarrow \mathbb{R} \) is of class \(C^{2,\alpha}_{\text{loc}} \) with \(0 < \alpha \leq 1 \) and satisfies

1. for some \(p \geq 2 + \alpha \),
 \[
 |D^2F(P + Q) - D^2F(P)| \leq C(1 + |P|^{p-2-\alpha} + |Q|^{p-2-\alpha})|Q|^\alpha;
 \]
2. (uniformly strictly quasiconvexity (see Evans [3], Giaquinta and Modica [5], Fusco and Hutchinson [4])). For every open bounded set \(G \subset \mathbb{R}^n \), every \(P \in \mathbb{R}^{Nn} \) and every \(\phi \in W_0^{1,p}(G; \mathbb{R}^N) \),
 \[
 \int_G [F(P) + \nu(|D\phi|^p + |D\phi|^2)] \, dx \leq \int_G F(P + D\phi) \, dx,
 \]
 where \(\nu > 0 \) is a constant.

Then, for every \(C^2 \) solution \(u_0 \) of (2) and each \(x_0 \in \Omega \), there exists an \(R > 0 \) with \(B_R(x_0) \subseteq \Omega \), such that \(u_0 \) is a strong minimizer of \(I(\cdot; B_R(x_0)) \) on \(A_R(x_0) \).

Remark. It is easy to see that (1) implies

\[
|F(P)| \leq C(1 + |P|^p)
\]

for some \(C > 0 \).

In general, even the minimizers of (1) are only partially regular (see e.g., [3, 4, 5]), i.e., there exists an open subset \(\Omega_0 \) of \(\Omega \) with \(\text{meas}(\Omega \setminus \Omega_0) = 0 \), such that \(u \in C^{1,\alpha}(\Omega_0; \mathbb{R}^N) \), \(0 < \alpha < 1 \). Therefore, for partially regular solutions of (2), we conclude that \(u_0 \) is locally stable on \(\Omega_0 \), i.e., \(u_0 \) is a minimizer on \(A_{R}(x_0) \) for some \(R > 0 \), \(B_R(x_0) \subseteq \Omega_0 \).

Proof of the theorem. We prove the theorem by contradiction. For a fixed \(x_0 \in \Omega \), if the conclusion of the theorem is not true, then there exists a sequence of positive \(R_j \) with \(R_j \rightarrow 0 \) as \(j \rightarrow \infty \), such that \(B_{R_j}(x_0) \subseteq \Omega \) and \(u_0 \) is not a minimizer in \(A_{R_j}(x_0) \). Hence there exists a sequence of functions \(\phi_j \in W_0^{1,p}(B_{R_j}(x_0)) \) such that

\[
\int_{B_{R_j}(x_0)} F(Du_0 + D\phi_j) \, dx < \int_{B_{R_j}(x_0)} F(Du_0) \, dx.
\]

Since \(u_0 \) is a solution of (2), we have, from (4),

\[
0 > \int_{B_{R_j}(x_0)} [F(Du_0 + D\phi_j) - F(Du_0)] \, dx = \int_{B_{R_j}(x_0)} DF(Du_0)D\phi_j \, dx
\]

\[
+ \int_{B_{R_j}(x_0)} \int_0^1 (1 - t)D^2F(Du_0 + tD\phi_j)D\phi_j D\phi_j \, dt \, dx
\]
and notice that, from the divergence theorem,
\[\int_{B_{R_j}(x_0)} DF(Du_0)D\phi_j \, dx = 0, \]
so that, in (5), we have
\[0 < -\int_{B_{R_j}(x_0)} \int_0^1 (1 - t)D^2F(Du_0 + tD\phi_j)D\phi_jD\phi_j \, dt \, dx. \]

On the other hand, from (2),
\[\nu \int_{B_{R_j}(x_0)} (|D\phi_j|^2 + |D\phi_j|^p) \, dx \]
\[\leq \int_{B_{R_j}(x_0)} [F(Du_0(x_0)) + D\phi_j) - F(Du_0(x_0))] \, dx \]
\[= \int_{B_{R_j}(x_0)} DF(Du_0(x_0))D\phi_j \, dx \]
\[+ \int_{B_{R_j}(x_0)} \int_0^1 (1 - t)D^2F(Du_0(x_0)) + tD\phi_j)D\phi_jD\phi_j \, dt \, dx. \]

Still from the divergence theorem, we have
\[\int_{B_{R_j}(x_0)} DF(Du_0(x_0))D\phi_j \, dx = 0, \]
so that adding (6) to (7) gives
\[\nu \int_{B_{R_j}(x_0)} (|D\phi_j|^p + |D\phi_j|^2) \, dx \]
\[\leq \int_{B_{R_j}(x_0)} \int_0^1 (1 - t)[D^2F(Du_0(x_0) + tD\phi_j) \]
\[- D^2F(Du_0(x) + tD\phi_j))]D\phi_jD\phi_j \, dt \, dx \]
\[\leq \int_{B_{R_j}(x_0)} C[1 + |Du_0(x)|^{p-2} + |Du_0(x_0)|^{p-2} \]
\[+ |D\phi_j|^{p-2}]|Du_0(x) - Du_0(x_0)|^\alpha|D\phi_j|^2 \, dx \]
\[\leq C(||Du_0||C) \int_{B_{R_j}(x_0)} |Du_0(x_0) - Du_0(x)|^\alpha(1 + |D\phi_j|^{p-2})|D\phi_j|^2 \, dx \]
\[\leq C \max_{x \in B_{R_j}(x_0)} \{|Du_0(x_0) - Du_0(x)|^\alpha \} \int_{B_{R_j}(x_0)} (|D\phi_j|^p + |D\phi_j|^2) \, dx. \]

Dividing both sides of (8) by \(\int_{B_{R_j}(x_0)} (|D\phi_j|^p + |D\phi_j|^2) \, dx \) we obtain
\[\nu < C \max_{x \in B_{R_j}(x_0)} \{|Du_0(x_0) - Du_0(x)|^\alpha \}. \]

Passing to the limit \(j \to \infty \), we have \(R_j \to 0 \) and
\[\max_{x \in B_{R_j}(x_0)} |\{Du_0(x_0) - Du_0(x)| \to 0 \]
so that
\[\nu \leq \lim_{j \to \infty} C \max_{x \in B_j(x_0)} \{|Du_0(x_0) - Du_0(x)|^p\} = 0. \]

This contradicts to the assumption \(\nu > 0 \).

Remark. This result could be easily extended to the case where \(F \) depends explicitly on \(x \), say, \(F = F(x, P) \). It seems to be unknown whether general weak equilibria of (1) in \(W^{1,p}(\Omega; \mathbb{R}^N) \) are local minima for variations of sufficiently small support near a Lebesgue point of \(Du \).

ACKNOWLEDGMENT

I am grateful to Professor J. M. Ball for his help in preparing this note. I would also like to thank the referee for helpful suggestions.

REFERENCES

DEPARTMENT OF MATHEMATICS, PEKING UNIVERSITY, BEIJING 100871, CHINA

DEPARTMENT OF MATHEMATICS, HERIOT-WATT UNIVERSITY, RICCARDON, EDINBURGH EH14 4AS, UNITED KINGDOM

Current address: The University of Queensland, St. Lucia, Qld 4072 Australia