ON THE MEAN CURVATURE ESTIMATES
FOR BOUNDED SUBMANIFOLDS

LESLIE COGLAN, YOE ITOKAWA, AND ROMAN KOSECKI

(Communicated by Jonathan M. Rosenberg)

Abstract. A Liouville-type theorem is proved for strongly subharmonic functions on complete riemannian manifolds of bounded curvature. We use this to give a simple proof of a theorem of Jorge, Koutroufiotis and Xavier, which gives an estimate for the exterior size of a submanifold in terms of the sup of the length of its mean curvature.

We give a short proof of the following theorem of Jorge and Xavier [3].

Theorem 1. Let M and \bar{M} be riemannian manifolds and let $f : M \to \bar{M}$ be an isometric immersion. Suppose that M is complete with inf scalar curvature $> -\infty$. Let $S := \sup$ of the sectional curvature of \bar{M}, $H := \sup$ of the length of mean curvature vector of f, and λ be such that there exists some closed normal ball $B_{\lambda^{-}}$ of radius λ in \bar{M} containing $f(M)$. Then,

$$
\lambda \geq \begin{cases}
\frac{1}{2} \tan^{-1}(\sqrt{\delta}/H) & \text{if } \delta < 0, \\
1/H & \text{if } \delta = 0, \\
\min\{\frac{1}{2}\tan^{-1}(\sqrt{\delta}/H), \pi/(2\sqrt{\delta})\} & \text{if } \delta > 0.
\end{cases}
$$

Theorem 1 follows from

Theorem 2. Let M be a complete riemannian manifold with bounded sectional curvature and θ a positive constant. Then, every C^2 solution to the inequality $\Delta u \geq \theta$ is unbounded.

Proof. First, we claim that given any $r > 0$, there exists $\alpha > 0$ such that for any $p \in M$, we can construct a C^2 function $\tilde{v}_{p,r} := M \to \mathbb{R}_+$ such that $\tilde{v}_{p,r}(p) = 1$, $\tilde{v}_{p,r}$ vanishes outside $B_r(p)$, and $|\text{Hess}_x \tilde{v}_{p,r}| \leq \alpha$ for all $x \in M$. That such a $\tilde{v}_{p,r}$ exists independent of the injectivity radius of M follows by smoothing a bump function by convolution in the tangent space using the techniques of Theorem 1.8 in [1]. Set $v_{p,r} := \theta \tilde{v}_{p,r}/(\alpha\sqrt{d})$, where $d := \dim M$. Then, $|\text{Hess} \ v_{p,r}| \leq \theta/\sqrt{d}$.

Now, assume that u is bounded. Let $n := \sup u$. Then for $r > 0$ fixed, there exists a point $q \in M$ such that $n - u(q) < \theta/(\alpha\sqrt{d})$ where α is as in the

Received by the editors October 22, 1989 and, in revised form, November 14, 1989 and July 26, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 53C20; Secondary 53C42.

The work was partially supported by NSF EPSCoR grant RII-8610669.
construction above. Then,

\[\Delta(u + v_{q,r}) \geq \Delta u - |\Delta v_{q,r}| \geq \Delta u - \frac{|\text{Hess } v_{q,r}|}{\sqrt{d}} \geq \theta - \theta = 0, \]

so the function \(u + v_{q,r} \) is subharmonic on \(M \). On the other hand, \(u(q) + v_{q,r}(q) > n - \theta/(\alpha \sqrt{d}) + \theta \delta_{q,r}(q)/(\alpha \sqrt{d}) = n \) while \(u + v_{q,r} \) coincides with \(u \) outside \(B_r(q) \). Therefore, \(u + v_{q,r} \) must attain some maximum point in the set \(B_r(q) \), contradicting the maximum principle.

Proof of Theorem 1. By the assumption on the scalar curvature and the Gauss equation, the sectional curvature of \(M \) is bounded (cf. [2, p. 722]). Assume that there exists a point \(o \in M \) such that \(f(M) \subset B_1(o) \). If \(\delta > 0 \), assume also that \(\lambda < \pi/(2\sqrt{\delta}) \). Then, it is well known (cf. [2, 3]) that the function \(\varphi : M \to \mathbb{R}^+ \) defined by \(\varphi(x) := \text{dist}_M(x, o)^2 \) satisfies \(\Delta \varphi(x) \geq d(\varepsilon - H\lambda) \) where

\[
\varepsilon := \begin{cases}
\lambda \sqrt{-\delta} \coth(\lambda \sqrt{-\delta}) & \text{if } \delta < 0, \\
1 & \text{if } \delta = 0, \\
\lambda \sqrt{\delta} \cot(\lambda \sqrt{\delta}) & \text{if } \delta > 0.
\end{cases}
\]

Hence substituting, if \(\lambda \) is less than the prescribed constant, \(\Delta \varphi \geq \theta := \sqrt{d} \varepsilon \). By Theorem 1, \(\varphi \) is unbounded, which is absurd.

References

Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294