SOME BANACH ALGEBRAS
WITHOUT DISCONTINUOUS DERIVATIONS

BRIAN FORREST

(Communicated by J. Marshall Ash)

Abstract. It is shown that the completion of $A(G)$ in either the multiplier norm or the completely bounded multiplier norm is a Banach algebra without discontinuous derivations when G is either F_2 or $SL(2, \mathbb{R})$.

1. Introduction

In [6], it was shown that a locally compact group G is amenable if and only if every derivation D from $A(G)$, the Fourier algebra of G, into an arbitrary Banach $A(G)$-bimodule X is continuous. The same result can be shown to hold for the Herz algebras $A_p(G), 1 < p < \infty$ [7]. Since the class of amenable groups is substantial (it includes all compact groups and all commutative groups) a large number of Banach algebras without discontinuous derivations have been identified. However, since $SL(2, \mathbb{R})$ and F_2, the free group on two generators, are nonamenable, $A(SL(2, \mathbb{R}))$ and $A(F_2)$ have discontinuous derivations. We will show that both $A(SL(2, \mathbb{R}))$ and $A(F_2)$ can be given natural norms in such a way that their completions will be Banach algebras without discontinuous derivations.

2. Preliminaries and notation

Let G be a locally compact group. Let $A(G)$ be the Fourier algebra of G as defined by P. Eymard in [4]. $A(G)$ is a Banach algebra with respect to pointwise multiplication. It is also the predual of the von Neumann algebra $VN(G)$ associated with the left-regular representation of G on $L^2(G)$ and a closed ideal in $B(G)$, the Fourier Stieltjes algebra of G.

Let $MA(G)$ denote the space of multipliers of $A(G)$. That is, the continuous functions ψ on G such that $\psi u \in A(G)$ for every $u \in A(G)$. For each $\psi \in MA(G), u \in A(G)$, let $m_\psi(u) = \psi u$. Denote by $\|\psi\|_m$ the operator norm of m_ψ. We call ψ a completely bounded multiplier of $A(G)$ if m_ψ^*, the adjoint of m_ψ, is a completely bounded map on $VN(G)$ [3]. Let $\|\psi\|_{M_0}$ be the

Received by the editors May 30, 1990 and, in revised form, September 4, 1990.

Key words and phrases. Fourier algebra, multipliers, completely bounded multiplier, derivation, free group.

©1992 American Mathematical Society
completely bounded norm of m^* and let $M_0A(G)$ denote the Banach algebra of completely bounded multipliers of $A(G)$. Then $B(G) \subset M_0A(G) \subset MA(G)$ and $\|u\|_M \leq \|u\|_{M_0} \leq \|u\|_{B(G)}$ for every $u \in B(G)$.

We will denote by $A_M(G)$ and $A_{M_0}(G)$ the closure of $A(G)$ in $MA(G)$ and in $M_0A(G)$ respectively. It is well known that G is amenable if and only if $MA(G) = B(G)$ [12, 13]. In this case $\|u\|_{B(G)} = \|u\|_M$ for every $u \in B(G)$ and hence $A(G) = A_M(G) = A_{M_0}(G)$.

If \mathscr{A} is a Banach algebra, then a derivation D on \mathscr{A} is a linear map from \mathscr{A} into a Banach \mathscr{A}-bimodule X such that $D(uv) = u \cdot D(v) + D(u) \cdot v$ for every $u, v \in \mathscr{A}$. If \mathscr{A} is commutative, we will denote the maximal ideal space of \mathscr{A} by $\Delta(\mathscr{A})$. We also use $\Delta(\mathscr{A})$ to denote the multiplicative linear functionals which correspond to the maximal ideal. Given a closed subset A of $\Delta(\mathscr{A})$, we denote by $I_{\mathscr{A}}(A)$, the ideal $\{u \in \mathscr{A}; u(x) = 0 \text{ for every } x \in A\}$, where \mathscr{A} is realized as an algebra of functions on $\Delta(\mathscr{A})$ by means of the Gelfand transform. A is called a set of spectral synthesis for \mathscr{A} or simply an S-set if $I_{\mathscr{A}}^0(A) = \{u \in \mathscr{A}; \text{ supp } u \text{ is compact, supp } u \cap A = \emptyset\}$ is dense in $I_{\mathscr{A}}(A)$.

3. Spectral synthesis and automatic continuity of derivations

Lemma 1. Let G be a locally compact group. Then

$$\Delta(A_M(G)) = \Delta(A_{M_0}(G)) = G.$$

Proof. Let $\psi \in \Delta(A_M(G))$. Then $\psi|_{A(G)}$, the restriction of ψ to $A(G)$, belongs to $\Delta(A(G))$. By [4, p. 222] there exists an $x \in G$ such that $\psi(u) = u(x)$ for every $u \in A(G)$.

Let $v \in A_M(G)$. As $A(G)$ is dense in $A_M(G)$, we can find $\{u_k\} \subset A(G)$ such that $\|u_k - v\|_M \to 0$. However, convergence in $A_M(G)$ implies convergence in the topology of uniform convergence on compacta and hence in the topology of pointwise convergence. Therefore $\psi(v) = \lim_{k} \psi(u_k) = \lim_{k} u_k(x) = v(x)$. It follows that as a set $\Delta(A_M(G)) = G$.

Now suppose that $\{x_\alpha\}_{\alpha \in I}$ is a net in G such that x_α converges to $x \in G$ in the usual topology on G. Then for each $u \in A_M(G)$, $u(x_\alpha) \to u(x)$. Hence $x_\alpha \to x$ in the $\sigma(A_M(G)^*, A_M(G))$ topology. Conversely, if $x_\alpha \to x$ in the $\sigma(A_M(G)^*, A_M(G))$ topology, then for every $u \in A(G)$, $u(x_\alpha) \to u(x)$. Since $G \subseteq A(G)^*$, $x_\alpha \to x$ in the $\sigma(A_M(G)^*, A_M(G))$ topology. But $\Delta(A(G))$ is homeomorphic to G so $x_\alpha \to x$ in G. Therefore the $\sigma(A_M(G)^*, A_M(G))$ topology agrees with the usual topology on G.

A similar argument establishes that $\Delta(A_{M_0}(G)) = G$. □

Proposition 1. Let \mathscr{A} be either $A_M(G)$ or $A_{M_0}(G)$. Then $\{e\}$ is an S-set of \mathscr{A}.

Proof. Let $v \in \mathscr{A}$ with $v \in I_{\mathscr{A}}(\{e\})$. Then there exists $u_k \in A(G)$ with $\|u_k - v\|_{\mathscr{A}} \to 0$. Furthermore since $u_k(e) \to v(e) = 0$, we can assume that $|u_k(e)| < 1/2k$. We can also find $w_k \in A(G)$ with $\|w_k\|_{A(G)} = w_k(e) = u_k(e)$. Let $v_k = u_k - w_k$. Then $v_k(e) = 0$. Since $v_k \in I_{A(G)}(\{e\})$ and $\{e\}$ is an S-set for $A(G)$ [4, p. 229], there exists $z_k \in A(G)$ with $\|z_k - v_k\|_{A(G)} \leq 1/2k$.
supp \(z_k \) is compact and \(\text{supp } z_k \cap \{ e \} = \emptyset \). However

\[
\| z_k - v \|_{\mathcal{A}} \leq \| z_k - v \|_{\mathcal{A}} + \| v \|_{\mathcal{A}} \\
\leq \| z_k \|_{A(G)} + \| u_k - v \|_{\mathcal{A}} + \| w_k \|_{A(G)} \\
\leq \| u_k - v \|_{\mathcal{A}} + 1/k.
\]

Hence \(\| z_k - v \|_{\mathcal{A}} \to 0 \). Therefore \(I^0_{\mathcal{A}}(\{ e \}) \) is dense in \(I_{\mathcal{A}}(\{ e \}) \) and \(\{ e \} \) is an \(S \)-set. □

Proposition 2. Let \(\mathcal{A} \) be either \(AM(G) \) or \(AM_0(G) \). If \(\mathcal{A} \) has a bounded approximate identity, then so does \(I_{\mathcal{A}}(\{ e \}) \).

Proof. Let \(\{ u_\alpha \}_{\alpha \in I} \) be a bounded approximate identity in \(\mathcal{A} \). Let \(\mathcal{F}(\{ e \}) = \{ K \subset G ; K \text{ is compact, } K \cap \{ e \} = \emptyset \} \). For every \(K \in \mathcal{F}(\{ e \}) \), there exists \(v_K \in B(G) \) such that \(\| v_K \|_{\mathcal{A}} \leq \| v_K \|_{B(G)} = 1 \), \(u_K(e) = 1 \), and \(v_K(x) = 0 \) for every \(x \in K \). Define \(w_{K, \alpha} \in \mathcal{A} \) by \(w_{K, \alpha} = u_\alpha - v_K u_\alpha \). Then \(w_{K, \alpha}(e) = 0 \), \(\| w_{K, \alpha} \|_{\mathcal{A}} \leq 2 \| u_\alpha \|_{\mathcal{A}} \), and \(w_{K, \alpha}v = u_\alpha v \) for every \(v \in \mathcal{A} \) with \(\text{supp } v \subseteq K \).

Order \(K \times I \) by \((K_1, \alpha_1) \leq (K_2, \alpha_2) \) if and only if \(K_1 \subseteq K_2 \) and \(\alpha_1 \leq \alpha_2 \). If \(v \in \mathcal{A} \) and \(\text{supp } v \subseteq \mathcal{F}(\{ e \}) \), then \(v = \lim_{K, \alpha} w_{K, \alpha} v \). By Proposition 1, such \(v \)'s are dense in \(I_{\mathcal{A}}(\{ e \}) \). As \(\{ w_{K, \alpha} \}_{K \times I} \) is bounded, \(\lim_{K, \alpha} w_{K, \alpha} w = w \) for every \(w \in I_{\mathcal{A}}(\{ e \}) \). □

The proof of Proposition 2 is a modification of the proof of [7, Proposition 3.2]. The case where \(G \) is amenable is due to A. Lau [11, Corollary 4.11].

Corollary 1. Let \(\mathcal{A} \) be either \(AM(G) \) or \(AM_0(G) \). If \(\mathcal{A} \) has a bounded approximate identity, then \(\mathcal{A} \) satisfies Ditkin's condition. Furthermore, if \(A \) has a closed subset of \(G \) and the boundary of \(A \) contains no nontrivial perfect set, then \(A \) is an \(S \)-set. In particular, every finite subset of \(G \) is an \(S \)-set for \(\mathcal{A} \).

Proof. Let \(x \in G \) and \(u \in \mathcal{A} \) be such that \(u(x) = 0 \). From the proof of Proposition 2 (translate is \(x \neq e \)), we see there exists a sequence \(\{ v_n \} \subset \mathcal{A} \) for which each \(v_n \) vanishes in a neighborhood \(V_n \) of \(\{ x \} \) and \(\lim_n \| v_n u - u \|_{\mathcal{A}} = 0 \).

Assume that \(G \) is not compact. Let \(u \in \mathcal{A} \), \(u \neq 0 \). Let \(\epsilon > 0 \). If \(\{ u_\alpha \}_{\alpha \in I} \) is a bounded approximate identity in \(\mathcal{A} \), then there exists \(u_\alpha \), such that \(\| u_\alpha u - u \|_{\mathcal{A}} < \epsilon/2 \). We can find \(v \in A(G) \) with \(\text{supp } v \) compact such that \(\| u_\alpha u - v \|_{\mathcal{A}} \leq \epsilon/2 \| v \|_{\mathcal{A}} \). Then \(\| vu - u \|_{\mathcal{A}} \leq \| vu - u_\alpha u \|_{\mathcal{A}} + \| u_\alpha u - u \|_{\mathcal{A}} \leq \epsilon \).

Hence \(\mathcal{A} \) satisfies Ditkin's condition [9, p. 49]. The remaining statements follow immediately from Ditkin's theorem [9, p. 497]. □

Corollary 1 is simply [7, Lemma 5.2, Proposition 5.3] when \(G \) is assumed to be amenable.

Proposition 3. Let \(\mathcal{A} \) be either \(AM(G) \) or \(AM_0(G) \). If \(\mathcal{A} \) has a bounded approximate identity and \(I \) is a closed cofinite ideal in \(\mathcal{A} \) (i.e., \(\dim \mathcal{A} / I < \infty \)), then \(I = I(A) \) for some finite set \(A = \{ x_1, \ldots, x_n \} \) where \(n \) is the codimension of \(I \).

Proof. Let \(A = Z(I) = \{ x \in G ; u(x) = 0 \text{ for every } u \in I \} \). Let \(n = \text{codim } I \).

Assume that \(A \) contains \(n + 1 \) distinct elements \(\{ x_1, \ldots, x_{n+1} \} \). We can find a compact neighborhood \(V_k \) of each \(x_k \) such that \(V_j \cap V_k = \emptyset \) if \(j \neq k \). We can also find \(u_k \in A(G) \) such that \(\text{supp } u_k \subseteq V_k \) and \(u_k(x_j) = 1 \) for \(1 \leq k \leq n + 1 \). But if \(\psi : \mathcal{A} \to \mathcal{A} / I \) is the canonical homomorphism, then \(\{ \psi(u_1), \ldots, \psi(u_{n+1}) \} \) is a linearly independent subset, which is impossible if
codim \(I = n \). Therefore \(A \) has at most \(n \) elements. Since \(A \) is finite, it is an \(S \)-set by Corollary 1. Therefore \(I = I(A) \).

Let \(A = \{x_1, \ldots, x_k\} \). Let \(u_k \in A(G) \) be such that \(u_k(x_k) = 1 \) and \(u_k(x_j) = 0 \) if \(j \neq k \). Let \(u \in \mathcal{A} \). Then

\[
u = \sum_{i=1}^{k} u(x_i)u_i + \left(u - \sum_{i=1}^{k} u(x_i)u_i\right).
\]

Since

\[
u - \sum_{i=1}^{k} u(x_i)u_i \in I(A), \quad k \geq n.
\]

Hence \(k = n \). \(\square \)

Proposition 4. Let \(\mathcal{A} \) be either \(A_M(G) \) or \(A_{M_0}(G) \). Assume that \(\mathcal{A} \) has a bounded approximate identity. Let \(I \) be a closed cofinite ideal of \(\mathcal{A} \). Then \(I \) has a bounded approximate identity. In particular \(I^2 = \{\sum_{i=1}^{n} u_i v_i, \ u_i, v_i \in I\} = I \).

Proof. By Proposition 3, \(I = I(\{x_1, \ldots, x_n\}) \) for some finite subset of \(G \).

Let \(A, B \) be two closed subsets of \(G \). Assume that \(I_{\mathcal{A}}(A) \) and \(I_{\mathcal{A}}(B) \) have bounded approximate identities \(\{u_i\}_{i \in I}, \{v_j\}_{j \in J} \) respectively. Then it is easy to see that \(\{u_i v_j\}_{i \in I, j \in J} \) is a bounded approximate identity for \(I(A \cup B) \).

Since \(\mathcal{A} \) has a bounded approximate identity, Proposition 2 implies that \(I_{\mathcal{A}}(\{e\}) \) has a bounded approximate identity. By translating, we see that \(I_{\mathcal{A}}(\{x\}) \) has a bounded approximate identity for every \(x \in G \). A simple induction argument shows that \(I \) also has a bounded approximate identity. Then \(I^2 = I \) follows from Cohen's factorization theorem [9, p. 268]. \(\square \)

Theorem 1. Let \(\mathcal{A} \) be either \(A_M(G) \) or \(A_{M_0}(G) \). If \(\mathcal{A} \) has a bounded approximate identity, then \(I \) is a cofinite ideal of \(\mathcal{A} \) if and only if \(I = I(A) \) for some finite subset \(A \) of \(G \).

Proof. Proposition 4 shows that every closed cofinite ideal of \(\mathcal{A} \) is idempotent. By [2, Theorem 2.3] every cofinite ideal of \(\mathcal{A} \) must be closed and is therefore of the form \(I(A) \) for some finite subset \(A \) of \(G \) by Proposition 3.

If \(I = I(A) \) for a finite subset \(A \) of \(G \), then the proof of Proposition 3 shows that \(I \) is cofinite. \(\square \)

If \(G \) is amenable, then Proposition 3 and Theorem 1 follow from [7, Corollary 5.6, Theorem 5.8].

Theorem 2. Let \(\mathcal{A} \) be either \(A_M(G) \) or \(A_{M_0}(G) \). If \(\mathcal{A} \) has a bounded approximate identity, then every homomorphism from \(\mathcal{A} \) with finite-dimensional range is continuous.

Proof. The statement follows immediately from Theorem 1, Proposition 4, and [2, Theorem 2.3]. \(\square \)

Lemma 2. Let \(\mathcal{A} \) be either \(A_M(G) \) or \(A_{M_0}(G) \). Assume that \(\mathcal{A} \) has a bounded approximate identity. Let \(I \) be a closed ideal in \(\mathcal{A} \) with infinite codimension. Then there exist sequences \(\{u_n\}, \{v_n\} \) in \(A(G) \) such that \(u_n v_1 \cdots v_{n-1} \notin I \) but \(u_n v_1 \cdots v_n \in I \) for \(n \geq 2 \).

Proof. If \(I \) has infinite codimension, then \(A = Z(I) = \{x \in G, u(x) = 0 \ \forall u \in I\} \) must be infinite by Theorem 1.
From the proof of [6, Lemma 2], we see that we can find sequences \(\{u_n\} \), \(\{v_n\} \subseteq A(G) \) such that \(u_n v_1 \cdots v_{n-1} \notin I_{A(G)}(A) \) while \(u_n v_1 \cdots v_n = 0 \). Since \(I_{A(G)}(A) \subseteq I_A(A) \), the result follows. \(\square \)

Theorem 3. Let \(\mathcal{A} \) be either \(A_M(G) \) or \(A_{M_0}(G) \). Assume that \(\mathcal{A} \) has a bounded approximate identity. Then every derivation \(D \) of \(\mathcal{A} \) into a Banach \(\mathcal{A} \)-bimodule \(X \) is continuous.

Proof. This follows immediately from Proposition 4, Lemma 2, and [10, Theorem 3]. \(\square \)

For the algebra \(A(G) \), the automatic continuity properties listed in Theorems 2, 3 are characteristic of amenable groups. We see that if \(A_M(G) \) or \(A_{M_0}(G) \) has a bounded approximate identity, then it possesses many of the properties of the Fourier algebra of an amenable group.

In [5] it was shown that \(A(F_2) \) has an approximate identity which is necessarily unbounded in \(A(G) \) but is bounded in \(\| \cdot \|_M \). Hence for the prototypical nonamenable group \(F_2 \), \(A_M(F_2) \) has a bounded approximate identity.

In [3] it was shown that the bounded approximate identity in \(A_M(F_2) \) is also bounded in \(\| \cdot \|_M \). Moreover, if \(G = SL(2, \mathbb{R}) \), \(G = SO(n, 1) \), or \(G \) is any closed subgroup of any of these groups, then \(A(G) \) has an approximate identity bounded in \(\| \cdot \|_M \). Therefore we have:

Theorem 4. Let \(G \) be \(SL(2, \mathbb{R}) \), \(SO(n, 1) \), or \(F_n \) for \(n = 2, 3, \ldots \). Let \(\mathcal{A} \) be either \(A_M(g) \) or \(A_{M_0}(G) \). Then every homomorphism for \(A \) with finite-dimensional range is continuous and every derivation from \(\mathcal{A} \) into a Banach \(\mathcal{A} \)-bimodule is continuous.

Proof. This follows immediately from Theorem 2, Theorem 3, and [3, Theorem 3.7]. \(\square \)

De Canniere and Haagerup had speculated about the existence of a bounded approximate identity in \(A_M(G) \) and \(A_{M_0}(G) \) for any locally compact group [3]. This would have provided a large new class of Banach spaces without discontinuous derivations, however, it has recently been shown that this is not the case (see [1]).

It would be of interest to know whether the above automatic continuity properties are characteristic of those groups for which either \(A_M(G) \) or \(A_{M_0}(G) \) has a bounded approximate identity.

Bibliography

8. _, *On amenability and some properties of $A_p(G)$*, preprint.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario Canada