LAYERS OF COMPONENTS OF $\beta([0, 1] \times N)$ ARE INDECOMPOSABLE

MICHEL SMITH

(Communicated by James E. West)

ABSTRACT. We examine the structure of certain subcontinua of the Stone-Cech compactification of the reals. Let N denote the integers, let $X = [0, 1] \times N$, and let C be a component of $X^* = \beta X - X$. It is known that C admits an upper semicontinuous decomposition G into maximal nowhere dense subcontinua of C so that C/G is a Hausdorff arc. The elements of G are called layers. It has been shown that the layers of C that contain limit points of a countable increasing or decreasing sequence of cut points of C are nondegenerate indecomposable continua (various forms of this fact have been proven by Bellamy and Rubin, Mioduszewski, and Smith). We show that all the layers of C are indecomposable.*

Let $A = [0, \infty)$. We wish to examine certain subcontinua of $A^* = \beta A - A$ the remainder of the Stone-Cech compactification of A. Let N denote the integers. Then $X = [0, 1] \times N$ is a subspace of A and X^* is a subspace of A^*. It has been shown that certain layers of components of X^* are indecomposable. (See Mioduszewski [M], Bellamy and Rubin [BR], and Smith [S4].) It is the purpose of this paper to show that every “layer” of components of X^* is indecomposable. This answers a question posed by Mioduszewski in [M]. A layer of a component C of X^* is a maximal nowhere dense (in C) subcontinuum of C.

First we introduce some notation. Let $Z(X)$ denote the zero sets of X (the closed subsets of X). Elements of βX are identified with ultrafilters of zero sets of X (closed sets of X). Let I_n denote $[0, 1] \times \{n\}$ for each $n \in N$. If $x \in X^*$, let $u_x = \{\{n\}I_n \cap H \neq \emptyset \} | H \in x\}$. It can be verified that if $x \in X^*$ then $u_x \in N^*$ and if $u \in N^*$ then $C(u) = \{x|u_x = u\}$ is a component of X^*.

We wish to state some properties of the layers of components of X^* and a useful characterization.

There is a natural order induced by the topology on the layers of $C(u)$. Let $p, q \in C(u)$; then we say that $p <_u q$ if and only if there exist $H \in p, K \in q$, and $D \in u$ so that every element of $H \cap I_n$ precedes every element of $K \cap I_n$ with respect to the usual order on I_n for all $n \in D$ (i.e., $H \cap I_n <_n K \cap I_n \forall n \in D$).

Received by the editors August 15, 1988 and, in revised form, October 19, 1990. 1991 Mathematics Subject Classification. Primary 54D40, 54F20. Key words and phrases. Stone-Cech compactifications, nonmetric continua, indecomposable continua.

* The theorem was recently discovered independently by J. Zhu.
The subscript "\(u \)" of the symbol "\(<_u \)" may be omitted if the meaning is clear from the context. Let \(\Omega \) denote the set of all sequences \(S = \{S(n)\}_{n=1}^{\infty} \) so that \(S(n) \in I_n \). If \(u \in N^* \) and \(S \in \Omega \) then define \(A(u, S) = \{H \in Z(X) | \exists D \in u \text{ so that } \{S(n) | n \in D\} \subset H\} \). \(A(u, S) \) is an ultrafilter and hence an element of \(X^* \). In fact \(A(u, S) \in C(u) \). If \(\{i | S(i) = 1\} \in u \) then \(A(u, S) \) is an end point of \(C(u) \). Similarly if \(\{i | S(i) = 0\} \in u \) then \(A(u, S) \) is an end point of \(C(u) \). Except for these two cases, if \(S \in \Omega \) then \(A(u, S) \) is a cut point of \(C(u) \). (The converse cannot be assumed. See Baldwin and Smith [BS].) Note that \(\{A(u, S) | S \in \Omega\} \) is dense in \(C(u) \).

The following observations are not difficult to verify (see Baldwin and Smith [BS], Mioduszewski [M], and Smith [S4]).

Observation 1. If \(p \) and \(q \) are two points of \(C(u) \) and \(p >_u q \) then there is a cut point \(A(u, S) \) with \(S \in \Omega \) so that \(p <_u A(u, S) <_u q \).

Observation 2. If \(p = A(u, S) \) for some \(S \in \Omega \) and \(q \in C(u) \), with \(q \neq p \), then either \(q <_u p \) or \(p <_u q \).

Observation 3. If \(S_1 \) and \(S_2 \) are two elements of \(\Omega \), \(u \in N^* \), and \(A(u, S_1) <_u A(u, S_2) \) then \(\{p \in C(u) | A(u, S_1) <_u p \leq A(u, S_2)\} \) is open in \(C(u) \) and \(\{p \in C(u) | A(u, S_1) \leq p \leq A(u, S_2)\} \) is a subcontinuum of \(C(u) \), and hence is not nowhere dense.

Lemma 1. Every cut point of \(C(u) \) is a layer of \(C(u) \).

Proof. If \(x \in C(u) \) then define \(L_x \) and \(R_x \) as follows:

\[
L_x = \{p \in C(u) | p <_u x\} \quad R_x = \{p \in C(u) | x <_u p\}.
\]

If \(p \) and \(q \) are points of \(C(u) \) and \(p <_u q \) then there is a sequence \(S \in \Omega \) so that \(p <_u A(u, S) <_u q \). Therefore we have

Claim 1.1. If \(x \in C(u) \) then \(L_x \) and \(R_x \) are connected.

Also since \(\{A(u, S) | S \in \Omega\} \) is dense in \(C(u) \) we have

Claim 1.2. \(Cl_{C(u)}(R_x \cup L_x) = C(u) \).

We also need to prove

Claim 1.3. If \(x \in M \) and \(M \) is a nowhere dense subcontinuum of \(C(u) \) containing \(x \) then \(M \cap L_x = \emptyset \) and \(M \cap R_x = \emptyset \).

Proof. Suppose \(x \in C(u) \) and \(M \) is a subcontinuum of \(C(u) \) that contains \(x \) and \(M \cap R_x \neq \emptyset \). Then there exists \(y \in M \cap R_x \) so that \(x <_u y \). By Observation 1 there exist \(S_1 \) and \(S_2 \) in \(\Omega \) so that \(x <_u A(u, S_1) <_u A(u, S_2) <_u y \). Since \(A(u, S_1) \) is a cut point of \(C(u) \) and separates \(x \) from \(y \), it follows that \(A(u, S_1) \in M \). Similarly \(A(u, S_2) \in M \); and in fact, if \(A(u, S_1) <_u A(u, S) <_u A(u, S_2) \) for \(S \in \Omega \) then \(A(u, S) \in M \). Therefore since \(M \) is compact, \(\{z \in C(u) | A(u, S_1) \leq z \leq A(u, S_2)\} \subset M \). So by Observation 3, \(M \) is not nowhere dense. This is a contradiction. Therefore \(M \cap R_x = \emptyset \) and similarly \(M \cap L_x = \emptyset \), which verifies Claim 1.3.

Suppose now that \(x \) is a cut point of \(C(u) \) and \(\{x\} \) is not a layer of \(C(u) \). Then there is a nowhere dense nondegenerate subcontinuum \(M \) of \(C(u) \) containing \(x \). Let \(y \in M - \{x\} \) Since \(x \) is a cut point of \(C(u) \), \(C(u) - \{x\} \) is the union of two mutually separated point sets \(H \) and \(K \). Since
$L_x \cup R_x \subseteq C(u) - \{x\}$, by Claims 1.1 and 1.2 either $L_x \subseteq H$ and $R_x \subseteq K$ or $R_x \subseteq H$ and $L_x \subseteq K$. Without loss of generality assume $R_x \subseteq H$ and $L_x \subseteq K$. Furthermore by Claim 3 $M \cap (L_x \cup R_x) = \emptyset$.

Claim 1.4. y is a limit point of R_x.

Proof. Let O be an open set containing y. Let $A \in y$, $B \in x$, and U be a basic open set in βX so that

(i) $A \cap B = \emptyset$,
(ii) $A \subseteq U$,
(iii) $Cl_{\beta X} U \subseteq 0$,
(iv) $B \cap Cl_{\beta X} U = \emptyset$,
(v) the number of components of $U \cap I_n$ is finite for all $n \in N$ (this can be done since $A \cap I_n$ is compact). Furthermore choose A so that $\{(0, i)\} \notin A$ for all i.

Let $N' = \{i \mid U \cap I_i \neq \emptyset\}$. Then $N' \in u$.

Let v_i be the rightmost component of $U \cap I_i$ (with respect to the usual order on $I_i = [0, 1] \times \{i\}$). Then if $i \in N'$ let $p_i \in v_i$ be a point such that $p_i > A \cap I_i$. If $P \in \Omega$ is such that $P(i) = p_i$ then $A(u, P) \in C(u)$, $A(u, P) > y$, and $A(u, P) \in U$.

Note that $p_i | z' \in N' \cap B = \emptyset$ and $\{B \cap I_j | j \in N'\} \in x$.

Consider $B' = \{B \cap ([1, p_j] \times \{j\}) | j \in N'\}$. If $B' \in x$ then $x > u A(u, P)$ so $x > u y$. So $y \in L_x$, which contradicts Claim 1.3. Therefore $B'' = \{B \cap ([p_j, 0] \times \{j\}) | j \in N'\}$ is in x. Therefore $A(u, P) > x$. Therefore O contains a point of R_x. So y is a limit point of R_x. Thus Claim 1.4 is established.

Similarly it can be shown that y is a limit point of L_x. So y is a limit point of both H and K. But H and K are mutually separated. This is a contradiction so the lemma must be true.

Lemma 2. If $p \in C(u)$ and $L = \{q \in C(u) | \text{neither } p <_u q \text{ nor } q <_u p\}$ then L is a layer of $C(u)$.

Proof. Let $p \in L$ and let $L = \{q \in C(u) | \text{neither } p <_u q \text{ nor } q <_u p\}$. Then $L = \bigcap\{\{x \in C(u) | A(u, s) \leq_u x \leq_u A(u, r)\} | A(u, s) < p < A(u, r)\}$. So L is a continuum. In order to verify that L is nowhere dense we only need to observe that if L is not nowhere dense in $C(u)$ then L would contain at least two cut points q_1 and q_2 of $C(u)$. But then one of them, q_i, is not so either $q_i < p$ or $p < q_i$, which is a contradiction. In order to verify that L is a maximal nowhere dense subcontinuum we only need to observe that if L' is a subcontinuum of $C(u)$ with $L \subseteq L'$ then L' contains a point q so that either $p < q$ or $q < p$. In either case L' contains at least two cut points of $C(u)$ and hence is not nowhere dense in $C(u)$. Therefore L is a layer of $C(u)$.

Lemma 3. If L is a maximal nowhere dense subcontinuum of $C(u)$ and $p \in L$ then $L = \{q | \text{neither } p <_u q \text{ nor } q <_u p\}$.

Proof. If p is a cut point or an end point of $C(u)$ then the lemma follows from the observations above and Lemma 1.

Suppose that L is a nondegenerate maximal nowhere dense subcontinuum of $C(u)$. Let $p \in L$. Then since L is nondegenerate, it follows from the above observations that L contains no cut point of $C(u)$. Therefore if $q \in L$ then
p \neq q$ and $q \neq p$. Therefore $\hat{L} = \{ x | p \neq x \text{ and } x \neq p \}$ contains L. But \hat{L} is nowhere dense, so since L is maximal, it follows that $L = \hat{L}$.

Notice that if G is the collection of layers of $C(u)$ then G is upper semi-continuous and $C(u)/G$ is a Hausdorff arc.

Lemmas 1, 2, and 3 (with a slight modification for the end points of $C(u)$) establish that L is a layer in $C(u)$ if and only if for each point $p \in L$,

$$L = \bigcap \{ \{ x \in C(u) | A(u, s) \leq x \leq A(u, r) \} | A(u, s) < p < A(u, r); \ r, s \in \Omega \}.$$

We are now prepared to prove the main result.

Theorem. Let $u \in N^*$ and let L be a layer of $C(u)$. Then L is indecomposable.

Proof. Suppose that M is an arbitrary property subcontinuum of L. We will prove that M is nowhere dense in L, which implies that L is indecomposable. Let \hat{U} and \hat{V} be disjoint open sets in βX so that $\text{Cl}_{\beta X} \hat{U} \cap \text{Cl}_{\beta X} \hat{V} = \emptyset$, $M \cap \hat{V} \neq \emptyset$, $M \cap \text{Cl}_{\beta X} \hat{U} = \emptyset$, and $\hat{U} \cap L \neq \emptyset$. Let U and V be open sets in βX so that

$$U \subset \text{Cl}_{\beta X} U \subset \hat{U}, \quad V \subset \text{Cl}_{\beta X} V \subset \hat{V},$$

$$M \cap V \neq \emptyset, \quad L \cap U \neq \emptyset,$$

and for each n the number of components of $I_n \cap U$ and of $I_n \cap V$ is finite.

Let $p \in M \cap V$.

Claim 1. If k is an integer, $H \in p$, $H \subset V \cap X$, and J is the set of all integers n such that there is a sequence $U_1^n, U_2^n, \ldots, U_{2k+1}^n$ of components of $U \cap I_n$ and a sequence $V_1^n, V_2^n, \ldots, V_{2k+3}^n$ of components of $V \cap I_n$ that intersect H such that

$$U_1^n < V_1^n < U_2^n < V_2^n < \cdots < U_{2k+1}^n < V_{2k+3}^n$$

and $k \leq i_n$, then $J \in u$.

Proof. Let k be a positive integer and suppose the hypothesis of the claim and that $J \notin u$. So there is a sequence \(\{s^i\}_{i=0}^{2k+3}\) of elements of Ω such that for each $n \in N - J$, $0 = s^0(n) < s^1(n) < s^2(n) < \cdots < s^{2k+1}(n) < s^{2k+2}(n) \leq s^{2k+3}(n) = 1$ and

$$U \cap I_n \subset \{ x \in I_n | s^i(n) \leq x \leq s^{i+1}(n) \text{ and } i \text{ is even} \},$$

$$V \cap I_n \subset \{ x \in I_n | s^i(n) \leq x \leq s^{i+1}(n) \text{ and } i \text{ is odd} \}. $$

Note that if the first component of $V \cap I_n$ precedes the first component of $U \cap I_n$ it may be ignored. Let $H^i = \bigcup_{n \in N - J} \{ x \in I_n | s^i(n) \leq x \leq s^{i+1}(n) \}$. Since $J \notin u$ we have $N - J \in u$ and then $\hat{H} = \{ x \in H \cap I_n | n \in N - J \} \in p$. Then $\hat{H} \subset \bigcup_{i=1, \text{ odd}} H^i$, so $H^1 \cup H^3 \cup \cdots \cup H^{2k+1} \in p$, and hence $H^i \in p$ for some odd integer i. But then $A(u, s^i) \leq u p \leq A(u, s^{i+1})$ and $U \cap \{ z \in C(u) | A(u, s^i) \leq u z \leq u A(u, s^{i+1}) \} = \emptyset$. This contradicts the fact that $U \cap L \neq \emptyset$, because $L \subset \{ z \in C(u) | A(u, s^i) \leq u z \leq u A(u, s^{i+1}) \}$. This establishes the claim.

For each n let $B^n_1, B^n_2, \ldots, B^n_{2k_{n}}$ be the components of $I_n - U$ that intersect V listed in order. If $\hat{H} \in p$ let $B(\hat{H}) = \{ B^n_1 | B^n \cap H \neq \emptyset \}$ and let $\mathcal{B} = \{ B(H) | H \in p \}$. Define $\text{Ls}(\mathcal{B}) = \bigcap_{B \in \mathcal{B}} \text{Cl}_{\beta X}(\bigcup B)$.

Claim 2. $\text{Ls}(\mathcal{B})$ is a continuum, $p \in \text{Ls}(\mathcal{B})$, and $\text{Ls}(\mathcal{B})$ is a component of $X^* - U$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Various forms of this claim have appeared elsewhere (see Blass [Bl], Smith [S1], and van Douwen [vD]). We will outline a proof for completeness.

Proof. Assume the hypothesis of the claim. Then the collection \(\{ \text{Cl}_{\beta X}(\bigcup B(H)) \mid H \in p \} \) is a collection of compact sets in \(\beta X \) so the common part \(\text{Ls}(\mathcal{B}) \) is compact. Since \(p \in \text{Cl}_{\beta X}(\bigcup B(H)) \) for each \(H \in p \) we have \(p \in \text{Ls}(\mathcal{B}) \).

Suppose that \(\text{Ls}(\mathcal{B}) \) is not a continuum but is the union of two mutually exclusive compact sets \(C_1 \) and \(C_2 \). Let \(W_1 \) and \(W_2 \) be open sets in \(\beta X \) containing \(C_1 \) and \(C_2 \) respectively with disjoint closures. Then there exists an element \(B(H) \) in \(\mathcal{B} \) so that \(\text{Cl}_{\beta X}(\bigcup B(H)) \subset W_1 \cup W_2 \). But \(X \cap W_1 \cap (\bigcup B(H)) \) and \(X \cap W_2 \cap (\bigcup B(H)) \) are both compact and \((W_1 \cap (\bigcup B(H))) \cup (W_2 \cap (\bigcup B(H))) \in p \) so \(W_i \cap (\bigcup B(H)) \in p \) for \(i = 1 \) or \(i = 2 \). (Note that each element of \(B(H) \) is connected and lies in \(W_1 \cup W_2 \).) Assume \(i = 1 \). Let \(\tilde{H} = W_1 \cap (\bigcup B(H)) \). Then \(\tilde{H} \in p \) and \(\text{Cl}_{\beta X}(\bigcup B(\tilde{H})) \subset \text{Cl}_{\beta X}(W_1) \), and hence \(\text{Cl}_{\beta X}(\bigcup B(\tilde{H})) \cap W_2 = \emptyset \) and so \(\text{Ls}(\mathcal{B}) \cap W_2 = \emptyset \), which is a contradiction.

It is easy to verify that \(\text{Ls}(\mathcal{B}) \) is a component of \(\bigcap_{i=1}^{\infty} B_i^* = X^* - U \).

Let \(\widehat{M} \) denote \(\text{Ls}(\mathcal{B}) \). Since \(\widehat{M} \) is a component of \(X^* - U \), \(p \in \widehat{M} \), \(M \subset X^* - U \), and \(p \in M \), it follows that \(M \subset \widehat{M} \).

For each \(B_i^\alpha \) let \(p_i^\alpha \in B_i^\alpha \cap V \), and let \(D = \{ p_i^\alpha \}_{i=1, n=1}^{\infty} \). If \(d \in D \) then let \(B(d) \) denote \(B_i^\alpha \) where \(d = p_i^\alpha \). Let \(D^* = \text{Cl}_{\beta X}(D) - D \).

Claim 3. Every component of \(X^* \cap \text{Cl}_{\beta X}(\bigcup \{ B_i^\alpha \mid n \in N, 1 \leq i \leq k_n \}) \) contains exactly one element of \(D^* \).

Proof. Let \(R = \{ (n, i) \mid n \in N, 1 \leq i \leq k_n \} \). If \(r \in R \) with \(r = (n, i) \) let \(B_r = B_i^\alpha \) and \(d_r = p_i^\alpha \). If \(\alpha \in R^* \) then let

\[
d\alpha = \bigcap \{ \text{Cl}_{\beta X}(d_r) \mid r \in J \} \mid J \in \alpha \}.
\]

Then \(d\alpha \) is a single point of \(D^* \) and \(d\alpha = d\gamma \) iff \(\alpha = \gamma \). Furthermore \(C \) is a component of \(X^* \cap \text{Cl}_{\beta X}(\bigcup \{ B_i^\alpha \mid n \in N, 1 \leq i \leq k_n \}) \) if and only if there is an \(\alpha \in R^* \) so that \(C = B\alpha \) where

\[
B\alpha = \bigcap \{ \text{Cl}_{\beta X}(Br) \mid r \in J \} \mid J \in \alpha \}.
\]

(See the argument to Claim 2 above and also [S1].) Furthermore \(B\alpha = B\gamma \) if and only if \(\alpha = \gamma \). Therefore \(d\alpha \in By \) if and only if \(\alpha = \gamma \); and this verifies Claim 3.

We have \(D^* \subset V \) by construction. Consider the sets \(\text{Even} = \bigcup \{ B_i^\alpha \mid i \text{ is even} \} \), \(\text{Odd} = \bigcup \{ B_i^\alpha \mid i \text{ is odd} \} \). Then either \(\text{Even} \in p \) or \(\text{Odd} \in p \). Without loss of generality assume \(\text{Even} \in p \). For \(i \) even, \(1 \leq i \leq k_n \), and \(n \) a positive integer let \(E_i^n = \{ x \in I_n \mid x \in B_{i-1}^\alpha \cup B_i^\alpha \text{ or } B_{i-1}^\alpha < x < B_i^\alpha \} \). Then \(B_i^\alpha \subset E_i^n \). Let \(E(J) = \{ E_i^n \mid E_i^n \cap J \neq \emptyset \} \) and let \(\mathcal{E} = \{ E(J) \mid J \in p \} \). Let \(\text{Ls}(\mathcal{E}) = \bigcap_{E \in \mathcal{E}} \text{Cl}_{\beta X}(\bigcup E) \), which is a continuum containing \(p \) by the same argument used to prove Claim 2. Since \(\text{Even} \in p \) and \(\text{Even} \subset E(\text{Even}) \) we have \(\widehat{M} = \text{Ls}(\mathcal{B}) \subset \text{Ls}(\mathcal{E}) \).

Claim 4. \(\text{Ls}(\mathcal{E}) \subset L \).

Proof. Suppose that the claim is not true. Since \(p \in \text{Ls}(\mathcal{E}) \) and \(\text{Ls}(\mathcal{E}) \not\subset L \), there exists an element \(s \in \Omega \) so that \(A(u, s) \in \text{Ls}(\mathcal{E}) \) and \(A(u, s) \in V \).
But by Claim 1 $E(\{s_n|n \in N\}) \notin p$. So $p \notin Cl_{\beta X}(\cup E(\{s(n)|n \in N\}))$, and hence $p \notin Cl_{\beta X}(\cup (E^n_i|s(n) \in E^n_i, n \in N, \text{ i even}, i \leq i \leq k_n))$. So $E = \{E^n_i|s(n) \in E^n_i, n \in N, \text{ i even}, i \leq i \leq k_n\}$ is an element of \mathcal{E} and $A(u, s) \notin Cl_{\beta X}(\cup E)$, which is a contradiction.

Let $z = d\alpha$ be the element of D^* that lies in \widetilde{M}. Let α be the element of R^* defined as follows: $\alpha = \{G \in R| \text{ there is a } J \in \alpha \text{ so that } \{(n, i-1)|(n, i) \in J\} \subset G\}$. It is not difficult to verify that $\alpha \in R^*$. But since $\{(n, i)|i \text{ is even}\} \in \alpha$ and $\{(n, i-1)|i \text{ is even}\} \in \alpha$, it follows that $\alpha \neq \alpha$, so $d\alpha \neq d\alpha$. Yet by construction since $B^n_i \cup B^n_{i-1} \subset E^n_i$ for i even, $1 \leq i \leq k_n$, it is easy to see that $d\alpha \in Ls(\mathcal{E})$. Therefore $d\alpha$ is a point of D^* distinct from $d\alpha$, $d\alpha \in Ls(\mathcal{E}) \subset L$ so $d\alpha \in L$, and since $\widetilde{M} \cap D^* = \{d\alpha\}$, it follows that $d\alpha \in \widetilde{M}$, and hence $d\alpha \in M$. So $d\alpha$ is a point of $L \cap V$ that is not in M. So it follows that M is nowhere dense in L, and hence L is indecomposable.

REFERENCES

[S2] ———, $\beta(X - \{x\})$ for X not locally connected, Topology Appl. 26 (1987), 239-250.
[S3] ———, No arbitrary product of $\beta([0, \infty)) - [0, \infty)$ contains a nondegenerate hereditarily indecomposable continuum, Topology Appl. 28 (1988), 23-28.
[S4] ———, The subcontinua of $\beta([0, \infty)) - [0, \infty)$, Topology Proc. 11 (1986), 385-413.

Department of Foundations, Analysis, and Topology, Auburn University, Auburn, Alabama 36849-5310