Finitely additive Gleason measures
HTML articles powered by AMS MathViewer
- by Anatolij Dvurečenskij
- Proc. Amer. Math. Soc. 115 (1992), 191-198
- DOI: https://doi.org/10.1090/S0002-9939-1992-1072335-9
- PDF | Request permission
Abstract:
We describe the set of all finitely additive measures which attain also infinite values on a quantum logic of a Hilbert space and which are expressible via the generalized Gleason-Lugovaja-Sherstnev formula. We prove that this set consists of those which are regular with respect to the set of all finite-dimensional subspaces. In addition, we show that this regularity does not entail the countable additivity, in general.References
- Johan F. Aarnes, Quasi-states on $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 149 (1970), 601–625. MR 282602, DOI 10.1090/S0002-9947-1970-0282602-4
- Garrett Birkhoff and John von Neumann, The logic of quantum mechanics, Ann. of Math. (2) 37 (1936), no. 4, 823–843. MR 1503312, DOI 10.2307/1968621
- Thomas Drisch, Generalization of Gleason’s theorem, Internat. J. Theoret. Phys. 18 (1979), no. 4, 239–243. MR 552434, DOI 10.1007/BF00671760
- Anatolij Dvurečenskij, Generalization of Maeda’s theorem, Internat. J. Theoret. Phys. 25 (1986), no. 10, 1117–1124. MR 868372, DOI 10.1007/BF00671687
- Anatolij Dvurečenskij, Note on a construction of unbounded measures on a nonseparable Hilbert space quantum logic, Ann. Inst. H. Poincaré Phys. Théor. 48 (1988), no. 4, 297–310 (English, with French summary). MR 969168
- Anatolij Dvurečenskij, Solution to a regularity problem, Proceedings of the Second Winter School on Measure Theory (Lipovský Ján, 1990) Jedn. Slovensk. Mat. Fyz., Bratislava, 1990, pp. 224–227. MR 1118434
- Anatolij Dvurečenskij, Tibor Neubrunn, and Sylvia Pulmannová, Regular states and countable additivity on quantum logics, Proc. Amer. Math. Soc. 114 (1992), no. 4, 931–938. MR 1045591, DOI 10.1090/S0002-9939-1992-1045591-0
- Manfred Eilers and Ernst Horst, The theorem of Gleason for nonseparable Hilbert spaces, Internat. J. Theoret. Phys. 13 (1975), no. 6, 419–424. MR 389054, DOI 10.1007/BF01808324
- Andrew M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885–893. MR 0096113, DOI 10.1512/iumj.1957.6.56050
- Gudrun Kalmbach, Orthomodular lattices, London Mathematical Society Monographs, vol. 18, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR 716496 G. D. Lugovaja, Bilinear forms generating measures on projectors, Izv. Vysš. Učebn. Zaved. Matematika 2 (1983), 88. —, On a construction of unbounded measures on projectors of a Hilbert space, Issled. po priklad. matem. Izd. Kazan Univ. 1984 (1984), 202-205.
- G. D. Lugovaja and A. N. Šerstnëv, The Gleason theorem for unbounded measures, Izv. Vyssh. Uchebn. Zaved. Mat. 12 (1980), 30–32 (Russian). MR 606673 G. Mackey, The mathematical foundations of quantum mechanics, Benjamin, New York, 1963. S. Maeda, Lattice theory and quantum logics, Maki-Shoten, Tokyo, 1980. P. Morales, New results in non-commutative measure theory, Proc. Sec. Winter Sch. Meas. Theory, Liptovský Ján (January 7-12, 1990), 1990, pp. 156-162.
- Barry Simon, A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Functional Analysis 28 (1978), no. 3, 377–385. MR 500266, DOI 10.1016/0022-1236(78)90094-0
- V. S. Varadarajan, Geometry of quantum theory. Vol. I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. MR 0471674
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 191-198
- MSC: Primary 81P10; Secondary 03G12, 28A60, 46L50
- DOI: https://doi.org/10.1090/S0002-9939-1992-1072335-9
- MathSciNet review: 1072335