Presentations for $3$-dimensional special linear groups over integer rings
HTML articles powered by AMS MathViewer
- by Marston Conder, Edmund Robertson and Peter Williams
- Proc. Amer. Math. Soc. 115 (1992), 19-26
- DOI: https://doi.org/10.1090/S0002-9939-1992-1079696-5
- PDF | Request permission
Abstract:
The following $2$-generator $6$-relator presentation is obtained for the $3$-dimensional special linear group $\operatorname {SL}(3,{\mathbb {Z}_k})$ for each odd integer $k > 1$: \[ \operatorname {SL}(3,{\mathbb {Z}_k}) = \langle x,y|{x^3} = {y^3} = {(xy)^6} = {({x^{ - 1}}y{x^{ - 1}}{y^{ - 1}}xy)^2} = {(x{y^{ - 1}}xyx{y^{ - 1}}{x^{ - 1}}{y^{ - 1}})^k} = {({(x{y^{ - 1}}xyx{y^{ - 1}}{x^{ - 1}}{y^{ - 1}})^{(k - 1)/2}}xy)^4} = 1\rangle .\] Alternative presentations for these groups and other groups associated with them are also given.References
- H. Bass, M. Lazard, and J.-P. Serre, Sous-groupes d’indice fini dans $\textbf {SL}(n,\,\textbf {Z})$, Bull. Amer. Math. Soc. 70 (1964), 385–392 (French). MR 161913, DOI 10.1090/S0002-9904-1964-11107-1
- Marston Conder, A surprising isomorphism, J. Algebra 129 (1990), no. 2, 494–501. MR 1040950, DOI 10.1016/0021-8693(90)90232-D
- Sherry M. Green, Generators and relations for the special linear group over a division ring, Proc. Amer. Math. Soc. 62 (1977), no. 2, 229–232. MR 430084, DOI 10.1090/S0002-9939-1977-0430084-3
- Jürgen Hurrelbrink, On presentations of $\textrm {SL}_{n}(\textbf {Z}_{S})$, Comm. Algebra 11 (1983), no. 9, 937–947. MR 696479, DOI 10.1080/00927878308822887
- Jens L. Mennicke, Finite factor groups of the unimodular group, Ann. of Math. (2) 81 (1965), 31–37. MR 171856, DOI 10.2307/1970380
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 19-26
- MSC: Primary 20F05; Secondary 20G40
- DOI: https://doi.org/10.1090/S0002-9939-1992-1079696-5
- MathSciNet review: 1079696