Small congruences and concreteness
HTML articles powered by AMS MathViewer
- by Magdalena Velebilová
- Proc. Amer. Math. Soc. 115 (1992), 13-18
- DOI: https://doi.org/10.1090/S0002-9939-1992-1079899-X
- PDF | Request permission
Abstract:
Let $\underline K$ be a concrete category and $\sim$ a congruence on $\underline K$ . Let $\sim$ be generated by a class $M = {M_1} \cup {M_2}$ of Pairs of $\underline K$-morphisms such that $\{ \operatorname {dom} f;(\exists g)((f,g) \in {M_1})\}$ and $\left \{ {\operatorname {rng} f;(\exists g)((f,g) \in {M_2})} \right \}$ are small sets. Then $\underline K / \sim$ is concrete. Consequently, if $\sim$ is generated by a small set of pairs of morphisms, then $\underline K / \sim$ is concrete.References
- P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489. MR 81864, DOI 10.1090/S0002-9904-1956-10036-0
- Peter J. Freyd, Concreteness, J. Pure Appl. Algebra 3 (1973), 171–191. MR 322006, DOI 10.1016/0022-4049(73)90031-5
- J. R. Isbell, Two set-theoretical theorems in categories, Fund. Math. 53 (1963), 43–49. MR 156884, DOI 10.4064/fm-53-1-43-49
- V. Koubek and J. Reiterman, Factor categories of the category of sets: description and concreteness, J. Pure Appl. Algebra 4 (1974), 71–77. MR 340363, DOI 10.1016/0022-4049(74)90031-0
- Luděk Kučera, Every category is a factorization of a concrete one, J. Pure Appl. Algebra 1 (1971), no. 4, 373–376. MR 299548, DOI 10.1016/0022-4049(71)90004-1
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 13-18
- MSC: Primary 18A32; Secondary 18B05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1079899-X
- MathSciNet review: 1079899