A sharp estimate in an operator inequality
HTML articles powered by AMS MathViewer
- by R. McEachin
- Proc. Amer. Math. Soc. 115 (1992), 161-165
- DOI: https://doi.org/10.1090/S0002-9939-1992-1081093-3
- PDF | Request permission
Abstract:
Let $\mathcal {H}$ and $\mathcal {K}$ be Hilbert spaces, and suppose $A \in \mathcal {B}(\mathcal {H})$ and $B \in \mathcal {B}(\mathcal {K})$ are selfadjoint operators with $\operatorname {dist} (\sigma (A),\sigma (B)) \geq \delta > 0$. It is known that for any $Q \in \mathcal {B}(\mathcal {K},\mathcal {H})$ we must have $\tfrac {\pi }{2}||AQ - QB|| \geq \delta ||Q||$. In this paper we give examples proving that $\pi /2$ is sharp in this inequality.References
- Rajendra Bhatia, Perturbation bounds for matrix eigenvalues, Pitman Research Notes in Mathematics Series, vol. 162, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. MR 925418
- Rajendra Bhatia, Chandler Davis, and Paul Koosis, An extremal problem in Fourier analysis with applications to operator theory, J. Funct. Anal. 82 (1989), no. 1, 138–150. MR 976316, DOI 10.1016/0022-1236(89)90095-5
- Rajendra Bhatia, Chandler Davis, and Alan McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45–67. MR 709344, DOI 10.1016/0024-3795(83)80007-X
- Chandler Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal. 7 (1970), 1–46. MR 264450, DOI 10.1137/0707001 R. McEachin, Analysis of an inequality concerning perturbation of self-adjoint operators, Doctoral disseration, Univ. of Illinois, Urbana, IL, October 1990.
- Béla Sz.-Nagy, Über die Ungleichung von H. Bohr, Math. Nachr. 9 (1953), 255–259 (German). MR 54765, DOI 10.1002/mana.19530090410
- Béla Szőkefalvi-Nagy, Bohr inequality and an operator equation, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985) Oper. Theory Adv. Appl., vol. 24, Birkhäuser, Basel, 1987, pp. 321–327. MR 903084
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 161-165
- MSC: Primary 47A30; Secondary 15A45, 47A55, 47B15
- DOI: https://doi.org/10.1090/S0002-9939-1992-1081093-3
- MathSciNet review: 1081093