κ-TOPOLOGIES FOR RIGHT TOPOLOGICAL SEMIGROUPS

JOHN BAKER, NEIL HINDMAN, AND JOHN PYM

(Communicated by Johanthan M. Rosenberg)

Abstract. Given a cardinal κ and a right topological semigroup S with topology τ, we consider the new topology obtained by declaring any intersection of at most κ members of τ to be open. Under appropriate hypotheses, we show that this process turns S into a topological semigroup. We also show that under these hypotheses the points of any subsemigroup T with card T ≤ κ can be replaced by (new) open sets that algebraically behave like T. Examples are given to demonstrate the nontriviality of these results.

Let κ be a cardinal number. We call a κ-topology any topology for which the intersection of any family of open sets with no more than κ members is again open. Such topologies are easy to come by. If X is any topological space, the sets V of the form V = \bigcap_{i \in I} U_i where \(U_i: i \in I \) is any family of sets open in X with card I ≤ κ provide a base of open sets for a κ-topology on X. We call this the κ-topology on X, we denote it by κ-X, we call its members κ-open sets, and we call κ-X the κ-coreflection of X.

A semigroup S with a completely regular topology is called right topological if all the maps s → st are continuous for t ∈ S. The topological center of S is

\[A(S) = \{ s \in S: t \mapsto st \text{ is continuous} \}. \]

One of our main results is that if A(S) contains a subset of cardinal κ that is dense in S then κ-S is a topological semigroup (that is, multiplication is jointly continuous). This theorem allows us to conclude that if T ⊆ S is a subsemigroup, card T ≤ κ and U is κ-open with T ⊆ U, then there is a κ-open semigroup T_0 with T ⊆ T_0 ⊆ U. These results hold in particular for Stone-Čech compactifications of discrete semigroups, the most important of which is βN, where N is the semigroup of positive integers with addition. In the latter case we shall see that the semigroups T_0 are, in one sense, large.

In the terminology of [3, §2], a space with a κ-topology is a P_κ-space. When κ = ℵ_0 (as in the case of βN), κ-topological spaces are more familiar as P-spaces (see [9, §1.65]). The space κ-X is then known as the P-space coreflection of X [9, Exercise 10B]). It is easy to see that in general κ-X is the κ-coreflection

Received by the editors August 1, 1990.
1991 Mathematics Subject Classification. Primary 22A15.

The second author gratefully acknowledges support received from the National Science Foundation via Grant DMS-8901058.
of X determined by the following categorical property: the κ-topology is the finest topology τ on X such that whenever Y has a κ-topology and $f: Y \to X$ is continuous then $f: Y \to (X, \tau)$ is continuous. In particular, every set open (or closed) in X is also κ-open (or κ-closed). The open sets in κ_0X are precisely the unions of G_δ's in X. Obviously, if every point of a Hausdorff space X has a basis consisting of not more than κ neighborhoods then κ-X is discrete. We also remark that if κ is finite the κ-topology is just the original topology.

We shall restrict ourselves to completely regular (Hausdorff) spaces. For such spaces X and each infinite cardinal κ, every point has a base of open neighborhoods in κ-X that are closed sets in X (and so also closed in κ-X). For let $G = \bigcap_{i \in I} U_i$ be any basic open κ-neighborhood of x, with U_i open in X and $\text{card} I \leq \kappa$. For each i, choose inductively a sequence (W^n_i) of neighborhoods of x open in X with $W^n_i \subseteq U_i$ and $\text{cl} W^{n+1}_i \subseteq W^n_i$ for $n \geq 0$. Then $\bigcap_{i,n} W^n_i = \bigcap_{i,n} \text{cl} W^n_i$ is an open κ-neighborhood of x (since $\text{card}(I \times N) \leq \kappa$) contained in G and is obviously closed in X.

We now show that the κ-topology on a suitable right topological semigroup S has a strong continuity property.

Lemma 1. Let S be a right topological semigroup and let κ be infinite. Suppose there is $K \subseteq \Lambda(S)$ such that K is dense in S and $\text{card} K \leq \kappa$. Then multiplication is continuous from $S \times \kappa$-S to S.

Proof. Take $a, b \in S$. Let U be any neighborhood of ab. Let U_0 be an open neighborhood of ab with $\text{cl} U_0 \subseteq U$. Using the fact that S is right topological, find an open neighborhood V of a with $Vb \subseteq U_0$. Since $K \subseteq \Lambda(S)$, for each $k \in K \cap V$ we can find an open neighborhood W_k of b with $kW_k \subseteq U_0$. Then $G = \bigcap\{W_k: k \in K \cap V\}$ is a κ-open neighborhood of b. Since K is dense in S, it follows that $K \cap V$ is dense in V. Therefore if $v \in V$ and $g \in G$, we see that $vg \in \text{cl}(K \cap V) \cdot g \subseteq \text{cl} U_0 \subseteq U$, again using the fact that S is right topological. Thus $VG \subseteq U$, as required. \square

Our remaining results are corollaries of Lemma 1.

Theorem 1. Under the hypotheses of Lemma 1, κ-S is a topological semigroup.

Proof. Let $a, b \in S$, and let E be a κ-neighborhood of ab, say $E = \bigcap_{i \in I} U_i$ with each U_i open in S and $\text{card} I \leq \kappa$. For each $i \in I$ use Lemma 1 to find an open neighborhood V_i of a and a κ-neighborhood G_i of b with $V_iG_i \subseteq U_i$. Then $F = \bigcap_i V_i$, $G = \bigcap_i G_i$ are κ-neighborhoods of a, b respectively with $FG \subseteq E$. \square

We can now prove our theorem about expanding semigroups. It says that, for subsemigroups T that are small enough, the points of T can be replaced by a family of κ-open sets that algebraically behave like T.

Theorem 2. Let S be as in Lemma 1. Let $T \subseteq S$ be a subsemigroup with $\text{card} T \leq \kappa$. Let E be a κ-open set with $T \subseteq E$. Then there is a disjoint family $\{T(t): t \in T\}$ of closed κ-open subsets of S such that $t \in T(t)$ and $T(s)T(t) \subseteq T(st)$ for all $s, t \in T$.

Proof. First we produce a disjoint family $\{E_0(t): t \in T\}$ of κ-open sets with $t \in E_0(t) \subseteq E$ for each $t \in T$. For each pair s, t of distinct points of T
find disjoint open neighborhoods $U_r(s), U_s(t)$ of s and t respectively. Then $E_0(t) = E \cap \bigcap \{U_r(s): s \in T, s \neq t\}$ satisfies our requirements.

The proof is now by induction. For each $n > 0$ we find closed (in S) κ-open neighborhoods $E_n(t)$ of t for each $t \in T$. If $\{E_n(t): t \in T\}$ has been determined, we use Theorem 1 to find κ-open neighborhoods $F_{n+1}^i(s), G_{n+1}^i(t)$ with $F_{n+1}^i(s)G_{n+1}^i(t) \subseteq E_n(st)$; since there is a base for the κ-topology consisting of closed sets, we may (and do) presume that $F_{n+1}^i(s)$ and $G_{n+1}^i(t)$ are closed in S. Then $E_{n+1}(t) = \bigcap_{s \in T}(F_{n+1}^i(s) \cap G_{n+1}^i(t))$ is a closed κ-open set containing t, and the sets $\{E_{n+1}(t): t \in T\}$ satisfy $E_{n+1}(s)E_{n+1}(t) \subseteq E_n(st)$ for all $s, t \in T$. Put $T(t) = \bigcap_{n=1}^{\infty} E_n(t)$. The family $\{T(t): t \in T\}$ of closed, κ-open sets is disjoint and satisfies $T(s)T(t) \subseteq T(st)$ for all s, t.

From Theorem 2 we see immediately that $T_0 = \bigcup_{t \in T} T(t)$ is a semigroup. If we put $\lambda = \text{card } T$ then, being the union of λ closed sets, T_0 is λ-closed. This establishes the following corollary.

Corollary 1. Let S, T, E be as in Theorem 2 and put $\lambda = \text{card } T$. Then there is a λ-closed κ-open semigroup T_0 with $T \subseteq T_0 \subseteq E$.

It is worth drawing attention to two special cases of Theorem 2.

Corollary 2. (i) Let S be as in Lemma 1. If $e \in S$ is idempotent and E is a κ-neighborhood of e, there is a closed κ-open subsemigroup E_0 with $e \in E_0 \subseteq E$.

(ii) Let S be as in Lemma 1 and in addition compact. Let $T \subseteq S$ be a finite subsemigroup. Then there is a disjoint family $\{T(t): t \in T\}$ of compact κ-open subsets of S with $t \in T(t)$ and $T(s)T(t) \subseteq T(st)$ for all $s, t \in T$.

Corollary 2 (ii) was part of the original inspiration for this paper. It was discovered about 30 years ago that βN is naturally a compact right topological semigroup with an operation $+$ that extends addition in N and this semigroup has proved to be an invaluable tool in Ramsey Theory (see the surveys [6, 7]). It was clear from the beginning that $N \subseteq \Lambda(\beta N)$ (and in fact $N = \Lambda(\beta N)$, see [4]) and so the conclusions of Theorems 1 and 2 hold for βN with $\kappa = \aleph_0$. As remarked above, the \aleph_0-topology is the P-space topology.

Corollary 3. (i) βN is jointly continuous in its P-space coreflection topology.

(ii) If T is a countable subsemigroup of βN and E is a G_δ with $T \subseteq E$ then there is a G_δ subsemigroup T_0 with $T \subseteq T_0 \subseteq E$. If T is finite, T_0 can be chosen to be a compact G_δ.

In the case of βN we can add a little more. Each G_δ in βN is large in the sense that it contains a set open in the subspace $N^* = \beta N \setminus N$ [9, Corollary 3.27]. Thus the semigroup T_0 is large in N^*. In particular, if G is a countable semigroup in N^*, then each element t of G can be ‘expanded’ to a compact set $G(t)$ with nonempty interior in N^* in such a way that $\{G(t): t \in G\}$ is disjoint and satisfies $G(s) + G(t) \subseteq G(s + t)$ for all $s, t \in G$.

The question arises of whether we can arrange for $G(s) + G(t) = G(s + t)$ in this situation. The answer is that equality is never achieved. The reason is that $G(s) + G(t)$ is nowhere dense in N^* [4, Theorem 8.1] but $G(s + t)$ has nonempty interior.

If G is a finite group in βN then $G_0 = \bigcup_{t \in G} G(t)$ is compact subsemigroup with nonempty interior. However, whether βN contains nontrivial finite
subgroups is unknown (and the question of the existence of such subgroups appears difficult).

The example βN shows that our results do have nontrivial content in at least one interesting case. Obtaining significant examples with $\kappa > \aleph_0$ is more difficult.

Example 1. For each cardinal κ, there exist a compact right topological semigroup S and a subsemigroup T of S for which $T(t)$ is nontrivial for each $t \in T$.

We begin with any infinite discrete semigroup L with $\text{card } L = \kappa$. Put $S = \beta L$. Then S can be made a right topological semigroup with $L \subseteq \Lambda(S)$ (see [6] or [7]). Let U be the set of κ-uniform ultrafilters on L, that is $U = \{p \in S : \text{for all } A \subseteq S \text{ with } \text{card } A < \kappa, p \notin \text{cl}_S A\}$. By [3, Corollary 7.8(b)], $\text{card } U = 2^{2^\kappa}$. By [3, Corollary 7.8(a)], if $p \in U$ then each neighborhood base of p has cardinal strictly greater than κ. So if T is a subsemigroup of S generated by a subset of U of cardinal κ, then for each $t \in T \cap U$ the κ-open set $T(t)$ consists of more than one point. Now [5, Theorem 2.5] gives conditions under which U is a semigroup, and this holds in particular if L is cancellative (in fact, U is then an ideal [5, Corollary 2.10]). Thus, for cancellative L, we have $T \subseteq U$ and our objective is achieved.

For any semigroup S with a Hausdorff topology there is always a cardinal κ such that κ-S is jointly continuous, for when $\kappa = \text{card } S$, κ-S is discrete. This suggests that we might use the smallest cardinal with this property as a measure of how discontinuous the multiplication of S is. Theorem 2 shows that sometimes a cardinal smaller than $\text{card } S$ will do. We now give two examples, one to show that even for semigroups satisfying the conditions of Lemma 1, $\text{card } S$ might be necessary. The other shows that a cardinal smaller than the κ of Theorem 1 is sometimes sufficient. (Of course, if S is jointly continuous to begin with, then $\kappa = 0$ is sufficient, but our example is not even separately continuous and is, we believe, more significant.)

Example 2. (i) Given regular cardinal κ, there is a semigroup S with $\text{card } S = \kappa$ that satisfies the conditions of Lemma 1 but for which λ-S is jointly continuous only if $\lambda \geq \kappa$.

Let κ be a regular cardinal (which we regard as an ordinal), so that $\kappa = \text{cf } \kappa$. Write the elements of $\bigoplus_\kappa Z$, the direct sum of κ copies of Z, as (transfinite) sequences $(z_\alpha)_{\alpha < \kappa}$ with $z_\alpha = 0$ for all but finitely many α. Define a total order on $\bigoplus_\kappa Z$ by $(z_\alpha) < (w_\alpha)$ if and only if $z_\mu < w_\mu$ where $\mu = \max\{\alpha : z_\alpha \neq w_\alpha\}$ (this is a 'reverse' lexicographic order). Then $\bigoplus_\kappa Z$ is a totally ordered group (with the usual operation $+$. We obtain S by adjoining to $\bigoplus_\kappa Z$ two further elements ∞ and $-\infty$. We extend the order to S by writing $-\infty < x < \infty$ for all $x \in \bigoplus_\kappa Z$, and we extend $+$ by writing $(-\infty) + x = -\infty$ and $\infty + x = \infty$ for all $x \in \bigoplus_\kappa Z$, and $x + (-\infty) = -\infty$, and $x + \infty = \infty$ for all $x \in S$. We give S a topology by declaring each $x \in \bigoplus_\kappa Z$ to be an isolated point and taking the intervals $[-\infty, x)$ to be basic neighborhoods of $-\infty$ and $(x, \infty]$ to be basic neighborhoods of ∞ for $x \in \bigoplus_\kappa Z$. Then S is a right topological semigroup and $\Lambda(S) = \bigoplus_\kappa Z$ (if $x \searrow -\infty$ then $\infty + x = \infty \Rightarrow -\infty = \infty + (-\infty)$, so that $\infty \notin \Lambda(S)$; the other properties of S are equally easy to see).

Now if $\lambda < \kappa$ (= $\text{cf } \kappa$ by hypothesis) the intersection of λ intervals of the
form \((x, \infty)\) contains another of this same form. So we see that \(\lambda\cdot S = S\). In particular, \(\Lambda(\lambda\cdot S) \neq S\), so \(\lambda\cdot S\) does not have a continuous multiplication. (In this example, \(\kappa\cdot S\) is discrete.)

(ii) Given any uncountable cardinal \(\kappa\) there is a semigroup \(S\) that satisfies the conditions of Lemma 1 and that has the property that every dense subset of \(S\) has cardinal at least \(\kappa\), but for which \(\kappa_0\cdot S\) is jointly continuous.

Let \(\kappa\) be an uncountable cardinal. We start with a semigroup \(T\) that has an identity 1 and satisfies (a) \(\Lambda(T)\) contains a countable subset \(Z\) dense in \(T\) (and notice that we may take \(1 \in Z\)) and (b) every point of \(T\) has a countable neighborhood base. There do exist compact right topological semigroups with these properties that are not topological (for example, the semigroup \(S\) used in [1, Example 1], but with the first copy \(T = \{e^{i\theta} : 0 \leq \theta < 2\pi\}\) of the circle group replaced by \(\{e^{in} : n \in \mathbb{Z}\} = \mathbb{Z}_0\) (say) to give \(\mathbb{Z}_0 \cup T_1 \cup T_2\)).

We consider the direct product \(T^\kappa\) with the direct product topology. Then \(\Lambda(T^\kappa) = \Lambda(T)^\kappa \supseteq Z^\kappa\). However, we can find a smaller subset of \(\Lambda(T^\kappa)\) that is dense in \(T^\kappa\); this is the direct sum of \(\kappa\) copies of \(Z\), a subset dense in the direct product, and it has cardinal exactly \(\kappa\). Theorem 1 tells us that \(\kappa\cdot T^\kappa\) has continuous multiplication, but as in (i) the \(\kappa\)-topology is uninteresting since it is discrete. Moreover, no subset of \(T^\kappa\) with fewer than \(\kappa\) elements is dense.

We shall determine the \(\kappa_0\)-topology on \(T^\kappa\). Let \((t_\alpha)_{\alpha < \kappa}\) be an element of \(T^\kappa\). For each \(\alpha\), let \(\{U_n(t_\alpha) : n = 1, 2, \ldots\}\) be a neighborhood base of \(t_\alpha\) in \(T\) with \(U_n(t_\alpha) \setminus \{t_\alpha\}\). For any finite subset \(F\) of \(\kappa\) with \(\text{card} F = r\), we write \(V(F) = \prod_{\alpha < \kappa} V_\alpha\) where \(V_\alpha = T\) for \(\alpha \notin F\), \(V_\alpha = U_n(t_\alpha)\) for \(\alpha \in F\). If \(E\) is any countable set of predecessors of \(\kappa\), we write

\[
W(E) = \bigcap\{V(F) : F \text{ is a finite subset of } E\}.
\]

Then \(W(E)\) is an \(\kappa_0\)-neighborhood of \((t_\alpha)\). It is easy to see that in fact \(W(E) = \prod_\alpha W_\alpha\) where \(W_\alpha = T\) if \(\alpha \notin E\), \(W_\alpha = \{t_\alpha\}\) if \(\alpha \in E\). It can now be seen that the \(\kappa_0\)-topology on \(T\) is determined by neighborhoods of the form \(W(E)\).

It is not difficult to check directly that this topology makes multiplication in \(T^\kappa\) continuous. It is perhaps more illuminating to observe that if \(T_d\) is \(T\) with the discrete topology then \(\kappa_0\cdot (T_d)^\kappa\) is the same as \(\kappa_0\cdot T^\kappa\). Since multiplication in \(T_d^\kappa\) is continuous, so is multiplication in \(\kappa_0\cdot (T_d)^\kappa\) (the argument is as in the proof of Theorem 1).

We conclude with a question. One of the difficult problems about compact right topological semigroups is to determine how the topological and algebraic structures interact. This is even true for minimal one-sided ideals though these have a simple algebraic structure. Thus, for a minimal left ideal \(L\), the set \(E(L)\) of idempotents in \(L\) is a left-zero semigroup \((ef = e\text{ for all }e, f)\), the semigroups \(eL\), for \(e \in E(L)\), are isomorphic groups, and algebraically \(L\) is isomorphic to the direct product \(E(L) \times (eL)\) [2, 1.3.11, 1.2.16]. Topologically \(L\) is compact. If \(S\) has a separately continuous multiplication, then \(L\) is isomorphic to the topological direct product of the compact subsemigroups \(E(L)\) and \((eL)\) [2, Theorem 1.5.1], but this may not be so in more general cases (see [8] for the semigroup \(\beta N\)). Theorem 1 tells us that \(\kappa\cdot S\) is jointly continuous for some \(\kappa\) (though it is not compact); is it true that \(\kappa\cdot L\) is isomorphic to a topological direct product of \(\kappa\cdot E(L)\) and \(\kappa\cdot (eL)\)?
REFERENCES

