REGULAR MATRICES AND P-SETS IN $\beta N \setminus N$. II

ROBERT E. ATALLA

(Communicated by Andrew M. Bruckner)

ABSTRACT. It was discovered by Henriksen and Isbell that the support in $\beta N \setminus N$ of a regular matrix is a P-set. We study conditions under which a P-subset of a matrix support set contains another matrix support set.

1. Introduction

Let $T = (t_{mn})$ be a nonnegative regular matrix. By regularity, T satisfies

(i) $\sup_n \sum_k t_{nk} < \infty$,
(ii) $\lim_{n \to \infty} \sum_k t_{nk} = 1$,
(iii) $\lim_{k \to \infty} t_{nk} = 0$ for all n.

T defines a linear operator on the space $C_b(N)$ of all real-valued bounded functions on the positive integers N, by the formula $Tf(n) = \sum_b t_{nk} f(k)$. Classically, regular matrices were of interest because they served to extend the concept of limit: if $\lim_{n \to \infty} f(n) = c$ exists then $\lim_{n \to \infty} Tf(n) = c$, and this latter limit (called T-lim(f)) may exist for many functions that do not have a limit in the usual sense.

If we restrict attention to functions of the form 1_A, where $A \subset N$, then we are able to make an interesting connection with the topology of $N^* = \beta N \setminus N$. Let F_T be the filter of subsets of N such that T-lim $1_A = 1$, and let K_T be the corresponding closed set in N^*, to be defined in the next section. K_T is called the support of T. In 1964 Henriksen and Isbell [HI] showed that K_T is a P-set, i.e., is interior to any closed G_δ set that contains it. (For the special case of the Cesaro matrix, this is even implicit in [H, p. 38].) In [A1] it is shown that, under the assumption N^* contains a dense set of P-points, every K_T set contains a family of 2^c pairwise disjoint P-sets, each the support of a regular Borel probability measure on N^*. (The support of a Borel probability measure is the intersection of all closed sets of measure 1.) Since a matrix support set cannot satisfy the countable chain condition [HI], it is clear that a P-set that is the support of a probability measure cannot be a matrix support set, so that under the continuum hypothesis ($C-H$), not every nowhere dense infinite P-set in N^* is the support of a matrix. (However it is consistent with ZFC that there are no c.c.c. P-sets in N^* [FSZ].) Just and Krawczyk [JK] showed

Received by the editors September 24, 1990 and, in revised form, November 7, 1990.

1991 Mathematics Subject Classification. Primary 40C05; Secondary 54D35, 54G05.

Key words and phrases. Regular matrix, support set of a matrix, P-set.

©1992 American Mathematical Society

0002-9939/92 $1.00 + .25$ per page

141
that the supports of a large class of matrices are homeomorphic to each other, but not to N^*. More recently, Winfried Just has shown that no nowhere dense K_T set is homeomorphic to N^*, and he has also produced (without set theoretic hypotheses) a nowhere dense P-set in N^* that is not a K_T set. There still remains the problem of characterizing those nowhere dense P-sets that are supports of matrices.

In this paper we make a first effort at finding P-sets that contain matrix supports. If K_T is a support set and $L \subset K_T$ is a P-set, we give necessary and sufficient conditions for L to contain the support set of some submatrix of T.

There remains the problem of when L is exactly the support of a submatrix of T.

The general theory of P-sets in topological spaces has been developed by A. I. Veksler and his colleagues. (See, e.g., [V], and also [A2].) For a survey P-sets in N^*, see [M]. For compactification and summability see [FT].

2. Preliminaries

We repeat some definitions from [A1]. If $A \subset N$, let A' be its closure in βN and $A^* = A' \cap (\beta N \setminus N) = A' \cap N^*$. Then $K_T = \bigcap\{A^* : A \in F_T\}$. If $f \in C_b(N)$, the space of bounded real functions on N, then f' is its extension to βN and $f^* = f'|N^*$.

$T = (t_{mn})$ is a positive regular matrix. If c_0 is the space of real functions on N vanishing at infinity then $T(c_0) \subset c_0$, so T induces an operator T^* on $C(N^*)$ by the formula $T^* f^* = (Tf)^*$. Also, $K_T = \bigcap\{A^* : T^{-1}\lim 1_A = 1\} = \bigcap\{A^* : A \in F_T\}$. We characterize K_T another way. If $p \in N^*$, let t_p be the Borel probability representing the functional $f \rightarrow T^* f(p)$ for $f \in C(N^*)$, so we have $T^* f(p) = \int f \, dt_p$. Then it is easy to see that $K_T = \text{closure } \{K_p : p \in N^*\}$, where K_p is the support set of t_p. Below, L will be a P-set in N^* such that $L \subset K_T$. If $F' = \{A \subset N : L \subset A^*\}$ then $F_T \subset F'$.

If $f \in C_b(N)$, we write $T f(n) = \sum_k t_{nk} f(k)$. If $f = 1_A$, the indicator of A, we may write $T 1_A(n) = t_n(A)$.

A basic fact about N^* is that a nonvoid open set cannot be written as a union of cardinality c of closed nowhere dense sets [P, p. 46].

Main Theorem. The following are equivalent:

(a) there exists an infinite $A = \{n(k)\} \subset N$ such that for all $B \in F'$,

$$\liminf t_{n(k)}(B) > 0;$$

(b) there exists an infinite $A = \{n(k)\}$ and infinite $E \subset N$ with

$$\liminf t_{n(k)}(E) > 0,$$

such that L contains the support in N^* of the regular matrix operator

$$R f(k) = T(f 1_E(n(k)))/T 1_E(n(k)).$$

3. Proof

"(b) implies (a)." Let F_R be the filter of sets summable to 1 by R, and let K_R be the corresponding closed set in N^*. If $L \supset K_R$ then $F' \subset F_R$, so for
B ∈ F',

\[1 = \lim_{k \to \infty} \frac{t_n(k)(B \cap E)}{t_n(k)(E)} \leq \lim_{k \to \infty} \frac{t_n(k)(B)}{t_n(k)(E)}. \]

Since \(\lim \inf t_n(k)(E) > 0 \), it follows that \(\lim \inf t_n(k)(B) > 0 \), so (a) holds.

For "(a) implies (b)," we need some lemmas.

3.1. Lemma. The function \(t_p(L) \) defined for \(p \in N^* \) is upper semicontinuous, so that \(\{ p : t_p(L) \geq t \} \) is closed for all real \(t \).

Proof. By regularity of the measure \(t_p \),

\[t_p(L) = \inf\{ t_p(A^*) : A \in F' \} \]

\[= \inf\{ T1_{A^*}(p) : A \in F' \}. \]

Since each \(T1_{A^*} \) is continuous on \(C(N^*) \), the result follows.

3.2. Lemma. \(\{ p \in N^* : t_p(L) > 0 \} \) has nonvoid interior.

Proof. Let \(A \) be as in hypothesis (a). We will prove \(A^* \) is contained in the set in question. Suppose not. Then there exists \(p \in A^* \) such that \(t_p(L) = 0 \).

By regularity of \(t_p \), there exists for each \(n \) a \(B_n \subset N \) such that \(L \subset B_n \) and \(t_p(B_n^*) < 1/n \). Since \(L \) is a P-set, there exists \(B \in F' \) with \(L \subset B^* \subset B_n^* \) for all \(n \), so \(t_p(B^*) = 0 \). Since \(p \in A^* \) and \(A = (n(k)) \), we get \(\lim \inf t_n(k)(B) = 0 \), contrary to (a).

3.3. Remark. If \(L \subset K_T \), there always exists some \(p \) such that \(t_p(L) > 0 \).

(Proof. Suppose \(t_p(L) = 0 \) for all \(p \in N^* \). Since \(t_p(L) = \lim\{ t_p(A^*) : A \in F' \} \), a downward directed set of continuous functions, Dini’s theorem implies the convergence is uniform. Hence for any \(n \), there exists \(A_n \in F' \) with \(t_p(A_n^*) < 1/n \). Since \(F' \) is a P-filter, there exists \(A \in F' \) with \(A^* \subset A_n^* \) for all \(n \), whence \(t_p(A^*) = 0 \) for all \(p \). Since \(A^* \) is clopen, \(A^* \cap K_T = \emptyset \), whence \(L \cap K_T = \emptyset \), a contradiction.)

However there may not be “enough” \(p \) with \(t_p(L) > 0 \). For instance, if we let \(T \) be the identity matrix and \(L \) any P-set nowhere dense in \(N^* \), then it is easy to see that no submatrix of \(T \) can have its support contained in \(L \). Thus some hypothesis like (a) is really needed.

3.4. Lemma. For each \(p \in N^* \), there exists \(A \in F' \) such that \(t_p(A^*) = t_p(L) \).

Proof. \(t_p(L) = \inf\{ t_p(A^*) : A \in F' \} \), so for each \(n \), there exists \(A_n \in F' \) with \(t_p(A_n^*) < t_p(L) + 1/n \). If \(A \in F' \) and \(A^* \subset A_n^* \) for all \(n \), then \(t_p(L) \leq t_p(A^*) < t_p(L) + 1/n \) for all \(n \).

3.5. Lemma. Let \(C \) be a nonvoid clopen subset of \(\{ p : t_p(L) > 0 \} \). Then there exists \(s > 0 \) such that \(C \cap \{ p : t_p(L) \geq s \} \) has nonvoid interior.

Proof. Let \(R_k = \{ p : t_p(L) \geq 1/k \} \), which is closed by 3.1. Then \(C = \bigcup_k (R_k \cap C) \), so by Baire category, there exists \(k \) so that \(R_k \cap C \) has nonvoid interior.

3.6. Lemma. There exists nonvoid clopen \(A^* \subset N^* \) and \(E \in F' \) such that for all \(p \in A^* \), \(t_p(E^*) = t_p(L) \geq s \), where \(s \) is as in 3.5.

Proof. Let \(C \) and \(s \) be as in 3.5, and let \(W \) be a clopen subset of \(C \cap \{ p : t_p(L) \geq s \} \). By 3.4, for each \(p \in W \), there exists \(A_p \in F' \) with \(t_p(L) = t_p(A_p^*) \geq s \). Let

\[Z_p = \{ q \in W : t_q(A_p^*) = t_q(L) \}, \]
a closed set. (Note that \(t_q(L) - t_q(A^*_p) \leq 0 \) and is upper semicontinuous. Now \(\{ q : t_q(L) - t_q(A^*_p) = 0 \} = \{ q : t_q(L) - t_q(A^*_p) \geq 0 \} \), so this set is closed.)

Since \(W = \bigcup \{ Z_p : p \in W \} \) and a clopen set in \(N^* \) is not the union of \(c \) nowhere dense closed sets, at least one of the \(Z_p \) has nonvoid interior. (The number of distinct \(Z_p \) sets is at most \(c \) because this is true of the corresponding \(A_p \) sets.) Let \(A \subseteq N \) be such that \(A^* \subseteq Z_p \), and let \(E \) be the element \(A_p \) corresponding to \(Z_p \).

3.7. Proof that (a) implies (b). Let \(A = \{ n(k) \} \) and \(E \) be as in 3.6. If the matrix operator \(R \) is defined as in the statement of the main theorem, then it is clear that for all \(B \in F' \), \(R\lim 1_B = 1 \), and it follows easily that the support of \(R \) is contained in \(L \). This completes the proof.

References

[P] D. Plank, On a class of subalgebras of \(C(X) \), with applications to \(\beta X \backslash X \), Fund. Math. 64 (1969), 41–54.

Department of Mathematics, Ohio University, Athens, Ohio 45701