Essential laminations in surgered $3$-manifolds
HTML articles powered by AMS MathViewer
- by Ying Qing Wu
- Proc. Amer. Math. Soc. 115 (1992), 245-249
- DOI: https://doi.org/10.1090/S0002-9939-1992-1104405-0
- PDF | Request permission
Abstract:
In generic cases, an essential lamination in the interior of a $3$-manifold will remain essential after most of the Dehn fillings along a torus boundary component.References
- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237–300. MR 881270, DOI 10.2307/1971311
- David Gabai, Surgery on knots in solid tori, Topology 28 (1989), no. 1, 1–6. MR 991095, DOI 10.1016/0040-9383(89)90028-1
- David Gabai, Foliations and the topology of $3$-manifolds, J. Differential Geom. 18 (1983), no. 3, 445–503. MR 723813
- David Gabai and Ulrich Oertel, Essential laminations in $3$-manifolds, Ann. of Math. (2) 130 (1989), no. 1, 41–73. MR 1005607, DOI 10.2307/1971476
- C. McA. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983), no. 2, 687–708. MR 682725, DOI 10.1090/S0002-9947-1983-0682725-0
- C. McA. Gordon and R. A. Litherland, Incompressible planar surfaces in $3$-manifolds, Topology Appl. 18 (1984), no. 2-3, 121–144. MR 769286, DOI 10.1016/0166-8641(84)90005-1 A. Hatcher and U. Oertel, Essential laminations and Dehn filling, preprint.
- Martin Scharlemann, Producing reducible $3$-manifolds by surgery on a knot, Topology 29 (1990), no. 4, 481–500. MR 1071370, DOI 10.1016/0040-9383(90)90017-E
- Ying Qing Wu, Incompressibility of surfaces in surgered $3$-manifolds, Topology 31 (1992), no. 2, 271–279. MR 1167169, DOI 10.1016/0040-9383(92)90020-I —, On the reducibility of surgered $3$-manifolds, Topology Appl. (to appear).
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 245-249
- MSC: Primary 57M50; Secondary 57M99, 57N10, 57R30
- DOI: https://doi.org/10.1090/S0002-9939-1992-1104405-0
- MathSciNet review: 1104405