-REPRESENTATIONS OF THE TRACE-CLASS OF AN H-ALGEBRA

LAJOS MOLNÁR

(Communicated by Palle E. T. Jorgensen)

Abstract. The aim of this note is to characterize the cyclic and the irreducible
-representations of the trace-class of a proper H-algebra.

Throughout this paper A denotes a proper H*-algebra (i.e., A is a Banach
-algebra whose norm is a Hilbert space norm such that $\langle x, yz^ \rangle = \langle xz, y \rangle =
\langle z, x^*y \rangle$ for every $x, y, z \in A$). A projection in A is a nonzero element e
of A such that $e^2 = e = e^*$; e is called primitive if it cannot be represented
as a sum of two mutually orthogonal primitive projections in A. A maximal
family of mutually orthogonal primitive projections is called projection base.
An element $a \in A$ is said to be positive ($a \geq 0$) if $\langle ax, x \rangle \geq 0$ for every
$x \in A$. For each $a \in A$ there exists a unique positive element $\|a\|$ of A such
that $\|a\|^2 = a^*a$.

By the trace-class of A we mean the set $\tau(A) = \{xy : x, y \in A\}$ that is
dense in A. If $a \in A$, then the following assertions are equivalent:

(i) $a \in \tau(A)$.
(ii) $\|a\| \in \tau(A)$.
(iii) There exists a positive element b of A such that $b^2 = \|a\|$.
(iv) $\sum a\langle a|e_\alpha, e_\alpha \rangle < \infty$ for some projection base $\{e_\alpha\}$ in A.

There is a positive linear functional τ (called trace) on $\tau(A)$ such that
$\tau(xy^*) = \tau y^*x = \langle x, y \rangle$ and $\tau a = \tau a^*$ for every $x, y \in A$ and $a \in \tau(A)$.
One can define a Banach algebra norm τ on $\tau(A)$ by the formula $\tau(a) = \|a\|$
($a \in \tau(A)$). Denote by $R(A)$ the set of right centralizers on A, i.e., let

$R(A) = \{S \in B(A) : S(xy) = (Sx)y \ (\forall x, y \in A)\}$,

where $B(A)$ denotes the set of bounded linear operators on A. It is trivial that
L_x, the operator of the left multiplication by x, is in $R(A)$ for every $x \in A$.
$R(A)$ is isomorphic and isometric to $\tau(A)^*$.

As for the detailed discussion of proper H*-algebras and their trace-classes
as well as the proofs of the above statements we refer to [1, 5, 6].

Received by the editors November 12, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 46K10, 46K15; Secondary
46H15.

Key words and phrases. Proper H*-algebra, trace class, representable positive linear functional,
cyclic and irreducible representation.

©1992 American Mathematical Society
0002-9939/92 $1.00 + $.25 per page
A positive linear functional \(f \) on a Banach *-algebra \(B \) is called representable if there is a Hilbert space \(H \) and a *-representation \(x \mapsto T_x \) of \(B \) on \(H \) with cyclic vector \(b \in H \) such that \(f(x) = \langle T_x b, b \rangle \) (\(x \in B \)). In [2, Theorem 37.11] it was stated that a positive linear functional \(f : B \to \mathbb{C} \) is representable if and only if there exists a positive constant \(c \in \mathbb{R} \) for which

\[
|f(x)|^2 \leq c f(x^* x) \quad (x \in B).
\]

Unfortunately, the proof presented there is incomplete since it uses the hermicity of the functional. For a correct proof see [4].

We begin with the following two basic lemmas.

Lemma 1. Let \(S \in R(A) \). Then the following assertions are equivalent:

(i) \(\sum_a |S| e_a, e_a < \infty \) for some projection base \(\{e_a\} \) in \(A \).

(ii) There exists a unique \(a \in \tau(A) \) such that \(S = L_a \).

Proof. Suppose that (i) holds. From the inequality \(S^* S \leq \|S\|S \) we have \(\sum_a \|S e_a\|^2 < \infty \). Since \(S \) is a right centralizer, one can easily verify that \(\{S e_a\} \) is a mutually orthogonal vector system. Let \(a = \sum a S e_a \). Then

\[
L_a x = ax = (\sum a S e_a) x = S(\sum a e_a x) = S x \quad (x \in A),
\]

where we have used the fact that \(x = \sum a e_a x \) for every \(x \in A \). Now \(L_{|a|} = |L_a| = |S| \) implies that \(a \in \tau(A) \). The uniqueness of \(a \) is obvious.

The other implication is easy to prove.

Lemma 2. Let \(a \in \tau(A) \) be positive. Then

\[
\tau(a) = \inf \{c \in \mathbb{R} : c \geq 0, \quad |\text{tr} ax|^2 \leq c \text{tr} ax^* x \quad (x \in \tau(A))\}.
\]

Proof. Consider the semi-inner product \(B \) on \(\tau(A) \) defined by

\[
B(x, y) = (ax, y) \quad (x, y \in \tau(A)).
\]

The Cauchy-Schwarz inequality implies that

\[
|\langle ae, e \rangle|^2 = |\langle ax, e \rangle|^2 \leq \langle ae, e \rangle \langle ax, x \rangle \quad (x \in \tau(A)),
\]

where \(e \) is an arbitrary projection in \(A \). Now it follows that

\[
|\text{tr} ax^*|^2 = |\text{tr}(ax^*)|^2 = |\text{tr} ax|^2 \leq \tau(a) \text{tr} x^*ax = \tau(a) \text{tr} ax^*x \quad (x \in \tau(A)).
\]

If \(c \in \mathbb{R}, \ c \geq 0 \) such that \(|\text{tr} ax|^2 \leq c \text{tr} ax^* x \quad (x \in \tau(A)) \), then for every projection \(e \) in \(A \) we have \(\langle ae, e \rangle = \text{tr} ae \leq c \), which implies that \(\tau(a) \leq c \).

Our first theorem characterizes the representable positive linear functionals on \(\tau(A) \).

Theorem 1. Let \(f : \tau(A) \to \mathbb{C} \) be a positive linear functional. Then the following assertions are equivalent:

(i) \(f \) is representable.

(ii) There exists a unique positive element \(a \) of \(\tau(A) \) such that \(f(x) = \text{tr} ax \) for every \(x \in \tau(A) \).

(iii) There exists a unique positive element \(b \) of \(A \) such that \(f(x) = \langle L_x b, b \rangle \) for every \(x \in \tau(A) \).
Proof. Let \(f \) be representable. Then there is a positive constant \(c \in \mathbb{R} \) such that \(|f(x)|^2 \leq c f(x^*x) \) \((x \in \tau(A)) \). Since \(f \in \tau(A)^* \), by [5, Theorem 2], there is a positive operator \(S \in R(A) \) for which \(f(x) = \text{tr} Sx \) \((x \in \tau(A)) \). If \(e \in A \) is a projection, then we have \(|\text{tr} Se|^2 \leq c \text{tr} Se \), i.e., \(\text{tr} Se \leq c \). Since it holds for every projection in \(A \), we can conclude that \(\sum_n \langle Se_n, e_n \rangle \leq c \) for every projection base \(\{e_n\} \) in \(A \). By Lemma 1 there is a positive element \(a \) in \(\tau(A) \) such that \(S = L_a \). The uniqueness of \(a \) follows from the density of \(\tau(A) \) in \(A \).

To the implication \((ii) \Rightarrow (iii) \), let \(b \in A \) be the positive square root of \(a \). The remainder part of the statement is easy to check.

As a consequence of the above theorem and [3, Lemma (4.5.8)] we have the following

Theorem 2. Let \(b \in A \). If \(H_b \) denotes the closure of the subspace \(\tau(A)b \) in \(A \) then \(x \mapsto L_x \mid H_b \) is a \(*\)-representation of \(\tau(A) \) with cyclic vector \(b \). Moreover, every cyclic \(*\)-representation of \(\tau(A) \) is unitarily equivalent to a representation of this kind.

Proof. The only thing that has to be proved is \(b \in H_b \) for every \(b \in A \). But it follows from the fact that the projections in \(A \) belong to \(\tau(A) \).

In what follows, let

\[
P = \{ f \in \tau(A)^* : f \text{ is positive and } |f(x)|^2 \leq f(x^*x) \text{ (}x \in \tau(A)\}) \}.
\]

By Theorem 1, for every representable positive linear functional \(f \) on \(\tau(A) \) there exists a unique positive member \(a \) of \(\tau(A) \) such that \(f(x) = \text{tr} ax \) \((x \in \tau(A)) \). Now, by Lemma 2, \(f \in P \) if and only if \(f(a) \leq 1 \). If \(f \) is not identically zero, then by [3, Corollary (4.6.5)], one can easily verify that \(f \) is an extremal point of \(P \) if and only if the conditions \(a \in \tau(A) \), \(a \geq 0 \), \(\tau(a) \leq 1 \), and \(\lambda a - a \geq 0 \) for some \(0 < \lambda \leq 1 \) imply that there is a \(0 \leq \mu \in \mathbb{R} \) such that \(\mu a = a \).

Theorem 3. Let \(0 \neq f \in P \) and \(a \) be the unique element of \(\tau(A) \) corresponding \(f \) as above. Then \(f \) is an extremal point of \(P \) if and only if there exists a primitive projection \(e \) in \(A \) for which \(a = e/\|e\|^2 \).

Proof. Necessity. Suppose that \(f \) is an extremal point of \(P \). It is easy to see that \(\tau(a) = 1 \). Let \(a = \sum_n \lambda_n e_n \) be the spectral representation of \(a \) where \(0 < \lambda_n \in \mathbb{R} \) and \(\{e_n\} \) is a sequence of mutually orthogonal primitive projections (see [6, Corollary 1]). Let \(\tilde{a} = e_1/\|e_1\|^2 \). Then \(\tilde{a} \in \tau(A) \), \(\tilde{a} \geq 0 \), and \(\tau(\tilde{a}) = 1 \). Moreover, for \(\lambda = 1/\|e_1\|^2 \) we have \(\lambda a - a \geq 0 \). Consequently, there exists an \(0 \leq \mu \in \mathbb{R} \) such that \(\mu a = e_1/\|e_1\|^2 \). Taking traces we arrive at

\[
\mu = \mu \text{tr} a = (1/\|e_1\|^2) \text{tr} e_1 = 1.
\]

Sufficiency. Let \(a = e/\|e\|^2 \) where \(e \) is a primitive projection in \(A \). Suppose that \(a \in \tau(A) \), \(0 \neq a \geq 0 \) such that \(\tau(a) \leq 1 \) and \(\lambda a - a \geq 0 \) for some \(0 < \lambda \in \mathbb{R} \). Let \(\tilde{a} = \sum_n \lambda_n e_n \) be the spectral representation of \(a \). Then, for every fixed \(n \), we have \(\lambda e_n/\|e\|^2 \geq \lambda_n e_n \). If we extend the singleton \(\{e\} \) to a projection base, then the first structure theorem of proper \(H^* \)-algebras (c.f. [1, Theorem 4.1]) implies that \(e_n A \subset eA \). Since \(eA \) is a minimal closed right ideal thus \(e_n A = eA \). It is known that the projection of \(x \in A \) on the closed
right ideal eA, where e is an arbitrary projection in A, is ex. Consequently, we have $e_n = ee_n = e_n e = e$, which implies that there is a $0 < \mu \in \mathbb{R}$ for which $\mu a = a$. This completes the proof.

Using the notation of Theorem 2, by [3, Theorem (4.6.4)], it is easy to prove our final result, which follows.

Theorem 4. Let e be a primitive projection in A. Then $x \mapsto L_x \upharpoonright H_e$ is a nonzero irreducible *-representation of $\tau(A)$. Moreover, every irreducible *-representation of $\tau(A)$ is unitarily equivalent to a representation of this kind.

References

Institute of Mathematics, Lajos Kossuth University, 4010 Debrecen, P.O. Box 12, Hungary