On the existence of invariant measures that behave like area
HTML articles powered by AMS MathViewer
- by Stewart Baldwin
- Proc. Amer. Math. Soc. 115 (1992), 89-96
- DOI: https://doi.org/10.1090/S0002-9939-1992-1112485-1
- PDF | Request permission
Abstract:
A countably additive measure on a locally compact, separable, metric space $X$ will be called area-like if points have measure zero, compact sets have finite measure, and nonempty open sets have nonzero measure. Given a homeomorphism $f$ of $X$, we examine criteria that guarantee the existence or nonexistence of arealike measures that are invariant under $f$.References
- Stewart Baldwin and Ed Slaminka, On measures preserved by Brouwer homeomorphisms, Topology Proc. 14 (1989), no. 1, 1–6. MR 1081115
- L. Garrido and C. Simó, Some ideas about strange attractors, Dynamical systems and chaos (Sitges/Barcelona, 1982) Lecture Notes in Phys., vol. 179, Springer, Berlin-New York, 1983, pp. 1–28. MR 708543
- Nicolas Kryloff and Nicolas Bogoliouboff, La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math. (2) 38 (1937), no. 1, 65–113 (French). MR 1503326, DOI 10.2307/1968511
- J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941), 874–920. MR 5803, DOI 10.2307/1968772
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 89-96
- MSC: Primary 58F11; Secondary 28C10, 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1112485-1
- MathSciNet review: 1112485