Fixed points for discontinuous quasi-monotone maps in sequence spaces
HTML articles powered by AMS MathViewer
- by Sabina Schmidt
- Proc. Amer. Math. Soc. 115 (1992), 361-363
- DOI: https://doi.org/10.1090/S0002-9939-1992-1081098-2
- PDF | Request permission
Abstract:
In [2] Hu gives a fixed point theorem for discontinuous quasimonotone increasing maps in $X = {\mathbb {R}^n}$. We will answer the question in [2] as to whether this result can be extended to $X = {l^p},1 \leq p \leq \infty$.References
- A. Chaljub-Simon and P. Volkmann, Un thĂ©orĂšme dâexistence et de comparison pour des Ă©quations diffĂ©rentielles dans les espaces de fonctions bornĂ©es, C.R. Acad. Sci. Paris Ser. I Math. (to appear).
- Shou Chuan Hu, Fixed points for discontinuous quasi-monotone maps in $\textbf {R}^n$, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1111â1114. MR 937846, DOI 10.1090/S0002-9939-1988-0937846-1
- Peter Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen VektorrĂ€umen, Math. Z. 127 (1972), 157â164 (German). MR 308547, DOI 10.1007/BF01112607
- Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR 816732, DOI 10.1007/978-1-4612-4838-5
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 361-363
- MSC: Primary 47H10; Secondary 47H05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1081098-2
- MathSciNet review: 1081098