## Oscillation criteria for second order nonlinear differential equations with integrable coefficients

HTML articles powered by AMS MathViewer

- by James S. W. Wong
- Proc. Amer. Math. Soc.
**115**(1992), 389-395 - DOI: https://doi.org/10.1090/S0002-9939-1992-1086346-0
- PDF | Request permission

## Abstract:

Consider the second order nonlinear differential equation $y'' + a\left ( t \right )f\left ( y \right ) = 0$ where $a\left ( t \right ) \in C[0,\infty ),f\left ( y \right ) \in {C^1}\left ( { - \infty ,\infty } \right ),f’\left ( y \right ) \geq 0$, and $yf\left ( y \right ) > 0$ for ${\text {y}} \ne {\text {0}}$. Furthermore, $f\left ( y \right )$ also satisfies either a superlinear or a sublinear condition, which covers the prototype nonlinear function $f\left ( y \right ) = |y{|^\gamma }\operatorname {sgn} y$ with $\gamma {\text { > 1}}$ and $0 < \gamma < 1$ respectively. The coefficient $a\left ( t \right )$ is allowed to be negative for arbitrarily large values of $t$ and is integrable in the sense that the improper interval $\int _t^\infty {a\left ( s \right )ds} = A\left ( t \right )$ exists for each $t \geq 0$. Oscillation criteria involving integrals of $A\left ( t \right )$ due to Coles and Butler for the superlinear and sublinear cases are shown to remain valid without the additional hypothesis that $A\left ( t \right ) \geq 0$.## References

- F. V. Atkinson,
*On second-order non-linear oscillations*, Pacific J. Math.**5**(1955), 643–647. MR**72316**
S. Belohorec, - Štefan Belohorec,
*Two remarks on the properties of solutions of a nonlinear differential equation*, Acta Fac. Rerum Natur. Univ. Comenian. Math.**22**(1969), 19–26. MR**289855** - G. J. Butler,
*On the oscillatory behaviour of a second order nonlinear differential equation*, Ann. Mat. Pura Appl. (4)**105**(1975), 73–92. MR**425252**, DOI 10.1007/BF02414924 - G. J. Butler,
*An integral criterion for the oscillation of a second order sublinear ordinary differential equation*, Indian J. Math.**24**(1982), no. 1-3, 1–7. MR**724314** - C. V. Coffman and J. S. W. Wong,
*Oscillation and nonoscillation theorems for second order ordinary differential equations*, Funkcial. Ekvac.**15**(1972), 119–130. MR**333337** - W. J. Coles,
*Oscillation criteria for nonlinear second order equations*, Ann. Mat. Pura Appl. (4)**82**(1969), 123–133. MR**255907**, DOI 10.1007/BF02410793 - W. J. Coles,
*A nonlinear oscillation theorem*, International Conference on Differential Equations (Proc., Univ. Southern California, Los Angeles, Calif., 1974) Academic Press, New York, 1975, pp. 193–202. MR**0430412** - Lynn H. Erbe,
*Nonoscillation criteria for second order nonlinear differential equations*, J. Math. Anal. Appl.**108**(1985), no. 2, 515–527. MR**793663**, DOI 10.1016/0022-247X(85)90042-3 - I. T. Kiguradze,
*A note on the oscillation of solutions of the equation $u^{\prime \prime }+a(t)| u| ^{n}\,\textrm {sgn}\,u=0$*, Časopis Pěst. Mat.**92**(1967), 343–350 (Russian, with Czech and German summaries). MR**0221012** - Man Kam Kwong and James S. W. Wong,
*An application of integral inequality to second order nonlinear oscillation*, J. Differential Equations**46**(1982), no. 1, 63–77. MR**677584**, DOI 10.1016/0022-0396(82)90110-3 - Man Kam Kwong and J. S. W. Wong,
*Nonoscillation theorems for a second order sublinear ordinary differential equation*, Proc. Amer. Math. Soc.**87**(1983), no. 3, 467–474. MR**684641**, DOI 10.1090/S0002-9939-1983-0684641-2 - Man Kam Kwong and James S. W. Wong,
*Linearization of second-order nonlinear oscillation theorems*, Trans. Amer. Math. Soc.**279**(1983), no. 2, 705–722. MR**709578**, DOI 10.1090/S0002-9947-1983-0709578-6 - Manabu Naito,
*Asymptotic behavior of solutions of second order differential equations with integrable coefficients*, Trans. Amer. Math. Soc.**282**(1984), no. 2, 577–588. MR**732107**, DOI 10.1090/S0002-9947-1984-0732107-9 - Ch. G. Philos,
*Oscillation criteria for second order superlinear differential equations*, Canad. J. Math.**41**(1989), no. 2, 321–340. MR**1001614**, DOI 10.4153/CJM-1989-016-3 - James S. W. Wong,
*Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients*, Trans. Amer. Math. Soc.**144**(1969), 197–215. MR**251305**, DOI 10.1090/S0002-9947-1969-0251305-6
—, - James S. W. Wong,
*A sublinear oscillation theorem*, J. Math. Anal. Appl.**139**(1989), no. 2, 408–412. MR**996967**, DOI 10.1016/0022-247X(89)90117-0 - James S. W. Wong,
*Oscillation theorems for second order nonlinear differential equations*, Proc. Amer. Math. Soc.**106**(1989), no. 4, 1069–1077. MR**952324**, DOI 10.1090/S0002-9939-1989-0952324-2 - James S. W. Wong,
*Oscillation of sublinear second order differential equations with integrable coefficients*, J. Math. Anal. Appl.**162**(1991), no. 2, 476–481. MR**1137632**, DOI 10.1016/0022-247X(91)90162-S

*Oscillatory solutions of certain nonlinear differential equations of second order*, Mat. Fyz. Casopis Sloven Akad Vied.

**11**(1961), 250-255.

*Oscillation theorems for second order nonlinear differential equations*, Bull. Inst. Math. Acad. Sincia

**3**(1975), 283-309.

## Bibliographic Information

- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**115**(1992), 389-395 - MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086346-0
- MathSciNet review: 1086346