Oscillation criteria for second order nonlinear differential equations with integrable coefficients
HTML articles powered by AMS MathViewer
- by James S. W. Wong
- Proc. Amer. Math. Soc. 115 (1992), 389-395
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086346-0
- PDF | Request permission
Abstract:
Consider the second order nonlinear differential equation $y'' + a\left ( t \right )f\left ( y \right ) = 0$ where $a\left ( t \right ) \in C[0,\infty ),f\left ( y \right ) \in {C^1}\left ( { - \infty ,\infty } \right ),f’\left ( y \right ) \geq 0$, and $yf\left ( y \right ) > 0$ for ${\text {y}} \ne {\text {0}}$. Furthermore, $f\left ( y \right )$ also satisfies either a superlinear or a sublinear condition, which covers the prototype nonlinear function $f\left ( y \right ) = |y{|^\gamma }\operatorname {sgn} y$ with $\gamma {\text { > 1}}$ and $0 < \gamma < 1$ respectively. The coefficient $a\left ( t \right )$ is allowed to be negative for arbitrarily large values of $t$ and is integrable in the sense that the improper interval $\int _t^\infty {a\left ( s \right )ds} = A\left ( t \right )$ exists for each $t \geq 0$. Oscillation criteria involving integrals of $A\left ( t \right )$ due to Coles and Butler for the superlinear and sublinear cases are shown to remain valid without the additional hypothesis that $A\left ( t \right ) \geq 0$.References
- F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643–647. MR 72316 S. Belohorec, Oscillatory solutions of certain nonlinear differential equations of second order, Mat. Fyz. Casopis Sloven Akad Vied. 11 (1961), 250-255.
- Štefan Belohorec, Two remarks on the properties of solutions of a nonlinear differential equation, Acta Fac. Rerum Natur. Univ. Comenian. Math. 22 (1969), 19–26. MR 289855
- G. J. Butler, On the oscillatory behaviour of a second order nonlinear differential equation, Ann. Mat. Pura Appl. (4) 105 (1975), 73–92. MR 425252, DOI 10.1007/BF02414924
- G. J. Butler, An integral criterion for the oscillation of a second order sublinear ordinary differential equation, Indian J. Math. 24 (1982), no. 1-3, 1–7. MR 724314
- C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation theorems for second order ordinary differential equations, Funkcial. Ekvac. 15 (1972), 119–130. MR 333337
- W. J. Coles, Oscillation criteria for nonlinear second order equations, Ann. Mat. Pura Appl. (4) 82 (1969), 123–133. MR 255907, DOI 10.1007/BF02410793
- W. J. Coles, A nonlinear oscillation theorem, International Conference on Differential Equations (Proc., Univ. Southern California, Los Angeles, Calif., 1974) Academic Press, New York, 1975, pp. 193–202. MR 0430412
- Lynn H. Erbe, Nonoscillation criteria for second order nonlinear differential equations, J. Math. Anal. Appl. 108 (1985), no. 2, 515–527. MR 793663, DOI 10.1016/0022-247X(85)90042-3
- I. T. Kiguradze, A note on the oscillation of solutions of the equation $u^{\prime \prime }+a(t)| u| ^{n}\,\textrm {sgn}\,u=0$, Časopis Pěst. Mat. 92 (1967), 343–350 (Russian, with Czech and German summaries). MR 0221012
- Man Kam Kwong and James S. W. Wong, An application of integral inequality to second order nonlinear oscillation, J. Differential Equations 46 (1982), no. 1, 63–77. MR 677584, DOI 10.1016/0022-0396(82)90110-3
- Man Kam Kwong and J. S. W. Wong, Nonoscillation theorems for a second order sublinear ordinary differential equation, Proc. Amer. Math. Soc. 87 (1983), no. 3, 467–474. MR 684641, DOI 10.1090/S0002-9939-1983-0684641-2
- Man Kam Kwong and James S. W. Wong, Linearization of second-order nonlinear oscillation theorems, Trans. Amer. Math. Soc. 279 (1983), no. 2, 705–722. MR 709578, DOI 10.1090/S0002-9947-1983-0709578-6
- Manabu Naito, Asymptotic behavior of solutions of second order differential equations with integrable coefficients, Trans. Amer. Math. Soc. 282 (1984), no. 2, 577–588. MR 732107, DOI 10.1090/S0002-9947-1984-0732107-9
- Ch. G. Philos, Oscillation criteria for second order superlinear differential equations, Canad. J. Math. 41 (1989), no. 2, 321–340. MR 1001614, DOI 10.4153/CJM-1989-016-3
- James S. W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197–215. MR 251305, DOI 10.1090/S0002-9947-1969-0251305-6 —, Oscillation theorems for second order nonlinear differential equations, Bull. Inst. Math. Acad. Sincia 3 (1975), 283-309.
- James S. W. Wong, A sublinear oscillation theorem, J. Math. Anal. Appl. 139 (1989), no. 2, 408–412. MR 996967, DOI 10.1016/0022-247X(89)90117-0
- James S. W. Wong, Oscillation theorems for second order nonlinear differential equations, Proc. Amer. Math. Soc. 106 (1989), no. 4, 1069–1077. MR 952324, DOI 10.1090/S0002-9939-1989-0952324-2
- James S. W. Wong, Oscillation of sublinear second order differential equations with integrable coefficients, J. Math. Anal. Appl. 162 (1991), no. 2, 476–481. MR 1137632, DOI 10.1016/0022-247X(91)90162-S
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 389-395
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086346-0
- MathSciNet review: 1086346