STABLE MEASURE OF A SMALL BALL

M. LEWANDOWSKI, M. RYZNAR, AND T. ŽAK

(Communicated by Lawrence F. Gray)

Abstract. Let \(\mu \) be a symmetric \(p \)-stable measure on a Banach space \((E, \| \cdot \|)\). We prove that \(\mu(\|x\| < t) \leq Kt \), where the constant \(K \) is independent of all properties of \(\mu \) except for the measure of the unit ball \(\mu(\|x\| < 1) \).

1. Introduction and preliminary facts

Let \(\mu \) be a symmetric Gaussian measure on a separable Banach space \((E, \| \cdot \|)\). In the paper of Szarek [7] there is the following bound for the distribution function of the norm

\[\mu(B_t) \leq K t, \quad t > 0, \]

where \(B_t \) is the ball with radius \(t \) and \(K \) is a constant depending only on \(\mu(B_1) \). This inequality was used to obtain some results in the theory of computational complexity [7].

A similar result in the Hilbert space case was proved by Sawa [6]

\[\mu(B_t) \leq \Phi(t), \quad 0 < t \leq 0, 2 \]

provided \(\int \|x\|^2 d\mu(x) = 1 \) and \(\Phi(t) = \sqrt{\frac{2}{\pi}} \int_0^t \exp(-x^2/2) \, dx \).

The purpose of this note is both to extend (1) to the case of symmetric \(p \)-stable measures, \(0 < p \leq 2 \), and to give another proof for (1). Our method consists in using a series representation of stable random vectors obtained in [4].

Let us recall that a symmetric measure \(\mu \) is called \(p \)-stable, \(0 < p \leq 2 \), iff for every \(t, s > 0 \) we have

\[tX + sY \overset{d}{=} (s^p + t^p)^{1/p} X, \]

where \(X, Y \) are i.i.d. random vectors with the distribution \(\mu \). It is well known (see, e.g., [5]) that there exists a finite measure \(\sigma \) on \(S_1 = \{x : \|x\| = 1\} \) such that the characteristic functional of \(\mu \) has the form

\[\hat{\mu}(x^*) = \exp\left(-\int |x^*(x)|^p \sigma(dx)\right), \quad x^* \in E^*. \]
The measure σ is called the spectral measure of μ.

In the following lemmas we recall a series representation of p-stable random vectors in E. Let $(\alpha_i)_{i=1}^\infty$ and $(z_i)_{i=1}^\infty$ be two sequences of i.i.d. random variables such that $P(\alpha_1 > t) = e^{-t}$, $E|z_1|^p = 1$, and z_1 is symmetric. We assume that (α_i) and (z_i) are independent. Next, we denote $\Gamma_n = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ and

$$c_p = \left(\int_0^\infty v^{-p} \sin v \, dv \right) -1/p = \left(\frac{1-p}{\Gamma(2-p)} \right)^{1/p}.$$

Lemma 1 [4]. (a) For $0 < p < 2$ the series $c_p \sum_{i=1}^\infty \Gamma_i^{-1/p} z_i$ is convergent a.s. and the characteristic function of the limit is $\exp(-|t|^p)$.

(b) For $0 < p < 1$ the series $\sum_{i=1}^\infty \Gamma_i^{-1/p}$ is convergent a.s. and has p-stable distribution with the characteristic function

$$\exp(-c_p |t|^p (1 - i \text{sgn}(t) \tan \pi \frac{p}{2})).$$

Lemma 2 [4]. Let μ be a symmetric p-stable measure, $0 < p < 2$, with the spectral measure σ. Let $(V_i)_{i=1}^\infty$ be a sequence of i.i.d. random vectors with the distribution $\sigma/\sigma(S_1)$, independent of (α_i) and (z_i). Then the series

$$c_p \sum_{i=1}^\infty \Gamma_i^{-1/p} V_i z_i$$

is convergent a.s. and has the distribution μ.

2. The main result

Theorem. Suppose that μ is a symmetric p-stable measure, $0 < p < 2$, such that $\int \|x\|^r d\mu(x) = 1$ for some $r \in (0, p)$. There exists a constant $K(p, r)$ depending only on p and r so that

$$\mu(B_t) \leq K(p, r) t, \quad t > 0.$$

The proof consists of two steps. In the first one we find the appropriate estimate for $\mu(B_t)$ provided $\sigma(S_1) = 1$.

Step 1. We use Lemma 2 assuming that $(z_i)_{i=1}^\infty$ is a Gaussian sequence and $\sigma(S_1) = 1$. Suppose that (z_i) is defined on a probability space (Ω_1, P_1) and $(\alpha_i), (V_i)$ are defined on (Ω_2, P_2). When we fix (α_i) and (V_i) then the random vector $c_p \sum_{i=1}^\infty \Gamma_i^{-1/p} V_i z_i(\omega_1)$ is Gaussian. By Anderson’s inequality [1] we have:

$$P_1 \left(\left\| c_p \sum_{i=1}^\infty \Gamma_i^{-1/p} V_i z_i(\omega_1) \right\| \leq t \right)$$

$$= P_1 \left(\left\| c_p \Gamma_1^{-1/p} V_1(\omega_1) + \sum_{i=2}^\infty c_p \Gamma_i^{-1/p} V_i (\omega_1) \right\| \leq t \right)$$

$$\leq P_1 (\| c_p \Gamma_1^{-1/p} V_1 z_i(\omega_1) \| \leq t)$$

$$= P_1 (|z_1| \leq c_p^{-1} \Gamma_1^{1/p} t) \quad P_2 - \text{a.s.}$$

since $\|V_1\| = 1$. P_2-a.s. Therefore, by Fubini theorem

$$\mu(B_t) \leq P_1 \times P_2 (|z_1(\omega_1)| \leq \Gamma_1^{1/p} (\omega_2) c_p^{-1} t) = \Psi_p(t),$$

where $\Psi_p(t)$ is a function of t. Therefore, we obtain the estimate $\mu(B_t) \leq K(p, r) t$. The proof is completed.
STABLE MEASURE OF A SMALL BALL

where \(\Psi_p \) is the distribution function of \(|z_1| \Gamma_1^{-1/p} c_p \).

Step 2. In this step we prove the theorem for \(p \)-stable measure \(\mu \), \(0 < p < 2 \), provided \(\int \|x\|^r d\mu(x) = 1 \), \(r < p \). Let \((X_i)_{i=1}^{\infty} \) be a sequence of i.i.d. random vectors independent of \((\alpha_i)\) and with the distribution of \(X_1 \) equal to \(\mu \). Put

\[
Y = c_r \sum_{i=1}^{\infty} \Gamma_i^{-1/r} X_i.
\]

By Lemma 1 the characteristic functional of \(Y \) is equal to

\[
\exp - \int |x^*(x)|^r \mu(dx) = \exp - \int \left| x^* \left(\frac{x}{\|x\|} \right) \right|^r \|x\|^r \mu(dx)
\]

\[
= \exp - \int |x^*(x)|^r \sigma_Y(dx),
\]

where \(\sigma_Y(S_1) = \int \|x\|^r \mu(dx) = 1 \).

Hence \(Y \) is an \(r \)-stable symmetric random vector with the spectral measure \(\sigma_Y \) so that by Step 1, \(P(\|Y\| < t) \leq \Psi_r(t) \). On the other hand by the property (2) and the independence of \((\Gamma_i)\) and \((X_i)\) we obtain

\[
\sum_{i=1}^{\infty} \Gamma_i^{-p/r} = \eta\left(\frac{r}{p} \right) \text{ is convergent a.s. by Lemma 1 and } \eta\left(\frac{r}{p} \right) \text{ is independent of } X_1.\]

Therefore, for every \(a > 0 \):

\[
\Psi_r(at) \geq P(\|Y\| \leq at) = P(c_r \left[\eta \left(\frac{r}{p} \right) \right]^{1/p} \|X_1\| \leq at)
\]

\[
\geq P(c_r \eta^{1/p} \leq a, \|X_1\| \leq t) = P \left(\eta \leq \left(\frac{a}{c_r} \right)^p \right) \cdot P(\|X_1\| \leq t).
\]

Hence

\[
\mu(B_t) \leq \frac{\Psi_r(at)}{P(\eta \leq \left(\frac{a}{c_r} \right)^p)}. \tag{5}
\]

Simple calculations give \(\sup_{t>0} \Psi_r(t) = C < \infty \). Putting

\[
K(p, r) = \sup_{t>0} \Psi_r(t) \cdot \inf_{a>0} a \left[P \left(\eta \leq \left(\frac{a}{c_r} \right)^p \right) \right]^{-1}
\]

we get the desired conclusion.

For arbitrary values of \(\int \|x\|^r \mu(dx) \) we obtain, by the Čebyshev inequality,

\[
\mu(B_t) \leq K(p, r) \left[\int \|x\|^r \mu(dx) \right]^{-1/r} \cdot t
\]

\[
\leq K(p, r) \left[1 - \mu(B_1) \right]^{-1/r} \cdot t.
\]

This inequality is a version of (1) for stable case \(p < 2 \) and for \(p = 2 \) it is precisely (1).

3. Estimation of constants \(K(p, r) \)

First we estimate the value of \(\sup_{t>0} \Psi_r(t) \). Recall \(\Psi_r(t) = P(|z_1| \Gamma_1^{-1/r} c_r \leq t) \), \(z_1 \) has the distribution \(N(0, \sigma_r) \), where \(\sigma_r = \pi^{1/2r} (2 \Gamma^{1/r}(\frac{r+1}{2}))^{-1} \), \(c_r = \ldots \)
Now
\[\Psi_r(t) = \int_0^\infty \frac{d}{dt} P \left(|z_1| \leq \frac{t}{c_1} r^{1/r} \right) e^{-x} \, dx \]
\[= \int_0^\infty \frac{\sqrt{2}}{\sqrt{\pi} \sigma_r} \exp \left(-\frac{x^2}{2 \sigma_r^2} \right) \frac{x^{1/r}}{c_r} e^{-x} \, dx \]
\[\leq \sqrt{\frac{2}{\pi}} \frac{\Gamma(1 + 1/r)}{c_r \sigma_r} = A_r. \]

We will also need an evaluation of the distribution function of \(\eta(\frac{1}{2}) = \sum_{i=1}^\infty \Gamma_i^{-2} \) which, by Lemma 1(b), has \(\frac{1}{2} \)-stable distribution on \(\mathbb{R}^+ \) with the density \(f(x) = 1/(2x^{3/2}) \exp(-\pi/(4x)) \) for \(x > 0 \). It is easy to notice that \(P(\eta(\frac{1}{2}) < t) = 1 - \Phi(\frac{\sqrt{t}}{2}) \).

(a) \(p = 2, r = 1 \). This is the Gaussian case. Assume that \(\int \|x\| \mu(dx) = 1 \).

By (5),
\[\mu(B_1) \leq A_1 \cdot \inf_{a > 0} \left[P \left(\eta \left(\frac{1}{2} \right) \leq \left(\frac{a}{c_1} \right)^2 \right) \right]^{-1} \]
\[= A_1 \sqrt{\frac{2}{\pi}} c_1 \left[\sup_{r > 0} r(1 - \Phi(r)) \right]^{-1} \]
\[\leq 2, 35t, \]
because \(A_1 = 1, c_1 = \frac{2}{\pi} \), and the above supremum is attained in a neighborhood of \(r = 0, 75 \).

(b) For arbitrary \(p \in (0, 2) \) we take \(r = \frac{p}{2} \) (because in this case we know the density of \(\eta(\frac{p}{2}) \)). In this case
\[(6) \quad K \left(p, \frac{p}{2} \right) = A_{p/2} \inf_{a > 0} \left[P \left(\eta \left(\frac{1}{2} \right) \leq \left(\frac{a}{c_{p/2}} \right)^p \right) \right]^{-1} \]
\[= \frac{1}{2^{1/p}} \sqrt{\pi} \Gamma^{2/p}(p/4 + 1/2) \Gamma(1 + 2/p) \inf_{r > 0} r^{2/p}(1 - \Phi(r))^{-1}. \]

Observe \(K(p, \frac{p}{2}) \) tends to infinity very rapidly as \(p \to 0 \). But, when \(p \geq e > 0 \) we can find some upper bound for it. For example, if \(1 \leq p < 2 \) then the properties of the function \(\Gamma(x) \) give the estimate \(\mu(B_1) \leq 2\sqrt{2\pi}/(1 - \Phi(1)) \cdot t \leq 15, 8t \), when we take \(r = 1 \) in (6) for simplicity.

(c) If \(0 < p < 1 \) we can give an estimate better than (6).

It is well known that in Banach spaces of stable type \(p \) there holds an inequality between the \(r \) th moment of a \(p \)-stable measure and the total mass of its spectral measure, and every Banach space is of stable type \(p, p < 1 \) (see, e.g., [5]). Namely, as it was shown by Pisier [2, Lemma 5.4]: if \(X \) is a \(p \)-stable random vector, \(0 < p < 1 \), \(0 < r < p \), and \(\sigma \) is its spectral measure then
\[(7) \quad [E\|X\|']^{1/r} \leq \frac{c_p(r)c_1(p)}{c_1(r)} [\sigma(S_1)]^{1/p}, \]
where \(c_p(r) = 2r^{-1} \Gamma(1 - r/p)(\int_0^\infty u^{-r-1} \sin^2 u \, du)^{-1} \) denotes the \(r \) th moment of the standard symmetric \(p \)-stable random variable on \(\mathbb{R} \) (for the value of
$c_p(r)$ compare [3]). But

$$r \int_0^\infty u^{-r-1} \sin^2 u \, du = 2^{r-1} \int_0^\infty u^{-r} \sin u \, du = 2^{r-1} c_r^{-r}$$

$$= 2^{r-1} \Gamma(2 - r) \cos \frac{\pi r}{2} \cdot [(1 - r)]^{1/r}.$$

Finally

$$c_p(r) = \left[\frac{\Gamma(1 - r/p)(1 - r)}{\Gamma(2 - r) \cos \frac{\pi r}{2}} \right]^{1/r}$$

and, by (7),

$$(E\|X\|^r)^{1/r} \leq \left[\frac{\Gamma(1 - r/p)}{\Gamma(1 - r)} \right]^{1/r} \left[\frac{\Gamma(1 - p)(1 - p)}{\Gamma(2 - p) \cos \frac{\pi r}{2}} \right]^{1/p} \cdot [\sigma(S_1)]^{1/p}$$

$$= B_p(r)[\sigma(S_1)]^{1/p}.$$

We use only Step 1. If μ is symmetric p-stable with the spectral measure σ then by (4) and (7) and the definitions of A_p and $B_p(r)$:

$$\mu(B_t) \leq \frac{\Psi_p(t)}{[\sigma(S_1)]^{1/p}} \leq \frac{\Psi_p(t) B_p(r)}{[\int \|x\|^{1/r} \mu(dx)]^{1/r}} \leq A_p B_p(r) \cdot t.$$

Remarks. (1) If p is a concrete given number we can estimate more carefully in (6) and get better constant.

(2) For symmetric p-stable random variable on R with characteristic function $\exp(-|t|^p)$ we have $P(|X| < t) \leq \pi^{-1} \Gamma(1 + 1/p)t$ because $\Gamma(1 + 1/p)/\pi$ is precisely the value of the density at zero, hence the constant $A_p B_p(r)$ must tend to infinity at least like $\Gamma(1 + 1/p)$ when $p \to 0$.

Acknowledgment

This problem arose during the Seminar on Probability in Banach Center (Warsaw, May 1990). We would like to thank Professor S. Kwapień for stimulating conversations and for showing preprint [7] to us.

Added in proof. When the first draft of this paper was circulating, the second author had a talk on this subject during the Banach Center Probability Workshop (June 1990). After his talk Professor X. Fernique kindly informed us that for the Gaussian case ($p = 2$) he knew another two proofs. One is explicitly contained in his paper *Les vecteurs aléatoires gaussiens et leurs espaces autoreproduisants*, Technical Report 34, Ser. Lab. Res. Statist. and Probab., University of Ottawa, 1985.

For the second, one can use an inequality of Kanter (*Probability inequalities for convex sets and multidimensional concentration functions*, J. Multivariate Anal. 6 (1976), 222–236, inequality 4.1): for $(X_i)_{i=1}^n$ independent and symmetric

$$P \left(\left\| \sum_{i=1}^n X_i \right\| < t \right) \leq \left(\frac{3}{2} \right) \left(1 + \sum_{i=1}^n P (\|X_i\| > t) \right)^{-1/2}.$$
Taking $X_1 \overset{d}{=} X_2 \overset{d}{=} \cdots \overset{d}{=} X/\sqrt{n}$ and $n = [\frac{1}{t}]$ we get the desired conclusion.

Fernique's proof is based on the rotational invariance of the product of Gaussian measures; hence it does not immediately apply for $p < 2$. The second method gives the estimate of order $t^{p/2}$, which is worse than t for $t \to 0$, if $p < 2$.

REFERENCES

Technical University, Department of Mathematics, Wybrzeże Wyspianskiego 27, Wroclaw 50 370, Poland