## $R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence

HTML articles powered by AMS MathViewer

- by Jeff Connor
- Proc. Amer. Math. Soc.
**115**(1992), 319-327 - DOI: https://doi.org/10.1090/S0002-9939-1992-1095221-7
- PDF | Request permission

## Abstract:

A summability method $S$ is called an $R$-type summability method if $S$ is regular and $xy$ is strongly $S$-summable to 0 whenever $x$ is strongly $S$-summable to 0 and $y$ is a bounded sequence. Associated with each $R$-type summability method $S$ are the following two methods: convergence in $\mu$-density and $\mu$-statistical convergence where $\mu$ is a measure generated by $S$. In this note we extend the notion of statistically Cauchy to $\mu$-Cauchy and show that a sequence is $\mu$-Cauchy if and only if it is $\mu$-statistically convergent. Let $W\left ( A \right ) = {\overline A ^{\beta \mathbb {N}}} \cap \beta \mathbb {N}\backslash \mathbb {N}$ for $A \subset \mathbb {N}$ and $\mathcal {K}{\text { = }} \cap \left \{ {W\left ( A \right ):A \subseteq \mathbb {N}{\text {,}}{\chi _A}\;{\text {is}}\;{\text {strongly}}\;S - {\text {summable}}\;{\text {to}}\;1} \right \}$. Then $\mu$-Cauchy is equivalent to convergence in $\mu$-density if and only if every ${G_\delta }$ that contains $\mathcal {K}$ in $\beta \mathbb {N}\backslash \mathbb {N}$ is a neighborhood of $\mathcal {K}$ in $\beta \mathbb {N}\backslash \mathbb {N}$. As an application, we show that the bounded strong summability field of a nonnegative regular matrix admits a Cauchy criterion.## References

- Robert E. Atalla,
*On the multiplicative behavior of regular matrices*, Proc. Amer. Math. Soc.**26**(1970), 437–446. MR**271752**, DOI 10.1090/S0002-9939-1970-0271752-X - Robert E. Atalla,
*On the consistency theorem in matrix summability*, Proc. Amer. Math. Soc.**35**(1972), 416–422. MR**308640**, DOI 10.1090/S0002-9939-1972-0308640-8 - R. E. Atalla,
*Regular matrices and $P$-sets in $\beta N\backslash N$*, Proc. Amer. Math. Soc.**37**(1973), 157–162. MR**324655**, DOI 10.1090/S0002-9939-1973-0324655-9 - C. S. Chun and A. R. Freedman,
*Theorems and examples for $R$-type summability methods*, J. Korean Math. Soc.**25**(1988), no. 2, 315–324. MR**968128** - C. S. Chun and A. R. Freedman,
*A bounded consistency theorem for strong summabilities*, Internat. J. Math. Math. Sci.**12**(1989), no. 1, 39–46. MR**973070**, DOI 10.1155/S0161171289000050 - J. S. Connor,
*The statistical and strong $p$-Cesàro convergence of sequences*, Analysis**8**(1988), no. 1-2, 47–63. MR**954458**, DOI 10.1524/anly.1988.8.12.47 - Jeff Connor,
*Two valued measures and summability*, Analysis**10**(1990), no. 4, 373–385. MR**1085803**, DOI 10.1524/anly.1990.10.4.373 - H. Fast,
*Sur la convergence statistique*, Colloq. Math.**2**(1951), 241–244 (1952) (French). MR**48548**, DOI 10.4064/cm-2-3-4-241-244 - J. A. Fridy,
*On statistical convergence*, Analysis**5**(1985), no. 4, 301–313. MR**816582**, DOI 10.1524/anly.1985.5.4.301 - A. R. Freedman and J. J. Sember,
*Densities and summability*, Pacific J. Math.**95**(1981), no. 2, 293–305. MR**632187**, DOI 10.2140/pjm.1981.95.293
G. H. Hardy and J. E. Littlewood, - Melvin Henriksen,
*Multiplicative summability methods and the Stone-Čech compactification*, Math. Z.**71**(1959), 427–435. MR**108720**, DOI 10.1007/BF01181414
M. Henriksen and J. Isbell, - I. J. Maddox,
*Statistical convergence in a locally convex space*, Math. Proc. Cambridge Philos. Soc.**104**(1988), no. 1, 141–145. MR**938459**, DOI 10.1017/S0305004100065312 - I. J. Maddox,
*A Tauberian theorem for statistical convergence*, Math. Proc. Cambridge Philos. Soc.**106**(1989), no. 2, 277–280. MR**1002541**, DOI 10.1017/S0305004100078105 - S. Mazur,
*On the generalized limit of bounded sequences*, Colloq. Math.**2**(1951), 173–175 (1952). MR**49354**, DOI 10.4064/cm-2-3-4-173-175 - Alan H. Mekler,
*Finitely additive measures on ${\rm \textbf {N}}$ and the additive property*, Proc. Amer. Math. Soc.**92**(1984), no. 3, 439–444. MR**759670**, DOI 10.1090/S0002-9939-1984-0759670-1 - John Rainwater,
*Regular matrices with nowhere dense support*, Proc. Amer. Math. Soc.**29**(1971), 361. MR**279609**, DOI 10.1090/S0002-9939-1971-0279609-6 - Walter Rudin,
*Homogeneity problems in the theory of Čech compactifications*, Duke Math. J.**23**(1956), 409–419. MR**80902** - T. Šalát,
*On statistically convergent sequences of real numbers*, Math. Slovaca**30**(1980), no. 2, 139–150 (English, with Russian summary). MR**587239** - Albert Wilansky,
*Summability through functional analysis*, North-Holland Mathematics Studies, vol. 85, North-Holland Publishing Co., Amsterdam, 1984. Notas de Matemática [Mathematical Notes], 91. MR**738632**

*Sur la serie de Fourier d’une function a carre sommable*, C. R. Acad. Sci. Paris Sér. I Math.

**156**(1913), 1307-1309.

*Multiplicative summability methods and the Stone-Cech compactification*II. Notices Amer. Math. Soc.

**11**(1964), 90-91.

## Bibliographic Information

- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**115**(1992), 319-327 - MSC: Primary 40D20; Secondary 40D25
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095221-7
- MathSciNet review: 1095221