$R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence
HTML articles powered by AMS MathViewer
- by Jeff Connor
- Proc. Amer. Math. Soc. 115 (1992), 319-327
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095221-7
- PDF | Request permission
Abstract:
A summability method $S$ is called an $R$-type summability method if $S$ is regular and $xy$ is strongly $S$-summable to 0 whenever $x$ is strongly $S$-summable to 0 and $y$ is a bounded sequence. Associated with each $R$-type summability method $S$ are the following two methods: convergence in $\mu$-density and $\mu$-statistical convergence where $\mu$ is a measure generated by $S$. In this note we extend the notion of statistically Cauchy to $\mu$-Cauchy and show that a sequence is $\mu$-Cauchy if and only if it is $\mu$-statistically convergent. Let $W\left ( A \right ) = {\overline A ^{\beta \mathbb {N}}} \cap \beta \mathbb {N}\backslash \mathbb {N}$ for $A \subset \mathbb {N}$ and $\mathcal {K}{\text { = }} \cap \left \{ {W\left ( A \right ):A \subseteq \mathbb {N}{\text {,}}{\chi _A}\;{\text {is}}\;{\text {strongly}}\;S - {\text {summable}}\;{\text {to}}\;1} \right \}$. Then $\mu$-Cauchy is equivalent to convergence in $\mu$-density if and only if every ${G_\delta }$ that contains $\mathcal {K}$ in $\beta \mathbb {N}\backslash \mathbb {N}$ is a neighborhood of $\mathcal {K}$ in $\beta \mathbb {N}\backslash \mathbb {N}$. As an application, we show that the bounded strong summability field of a nonnegative regular matrix admits a Cauchy criterion.References
- Robert E. Atalla, On the multiplicative behavior of regular matrices, Proc. Amer. Math. Soc. 26 (1970), 437–446. MR 271752, DOI 10.1090/S0002-9939-1970-0271752-X
- Robert E. Atalla, On the consistency theorem in matrix summability, Proc. Amer. Math. Soc. 35 (1972), 416–422. MR 308640, DOI 10.1090/S0002-9939-1972-0308640-8
- R. E. Atalla, Regular matrices and $P$-sets in $\beta N\backslash N$, Proc. Amer. Math. Soc. 37 (1973), 157–162. MR 324655, DOI 10.1090/S0002-9939-1973-0324655-9
- C. S. Chun and A. R. Freedman, Theorems and examples for $R$-type summability methods, J. Korean Math. Soc. 25 (1988), no. 2, 315–324. MR 968128
- C. S. Chun and A. R. Freedman, A bounded consistency theorem for strong summabilities, Internat. J. Math. Math. Sci. 12 (1989), no. 1, 39–46. MR 973070, DOI 10.1155/S0161171289000050
- J. S. Connor, The statistical and strong $p$-Cesàro convergence of sequences, Analysis 8 (1988), no. 1-2, 47–63. MR 954458, DOI 10.1524/anly.1988.8.12.47
- Jeff Connor, Two valued measures and summability, Analysis 10 (1990), no. 4, 373–385. MR 1085803, DOI 10.1524/anly.1990.10.4.373
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244 (1952) (French). MR 48548, DOI 10.4064/cm-2-3-4-241-244
- J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301–313. MR 816582, DOI 10.1524/anly.1985.5.4.301
- A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), no. 2, 293–305. MR 632187, DOI 10.2140/pjm.1981.95.293 G. H. Hardy and J. E. Littlewood, Sur la serie de Fourier d’une function a carre sommable, C. R. Acad. Sci. Paris Sér. I Math. 156 (1913), 1307-1309.
- Melvin Henriksen, Multiplicative summability methods and the Stone-Čech compactification, Math. Z. 71 (1959), 427–435. MR 108720, DOI 10.1007/BF01181414 M. Henriksen and J. Isbell, Multiplicative summability methods and the Stone-Cech compactification II. Notices Amer. Math. Soc. 11 (1964), 90-91.
- I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 141–145. MR 938459, DOI 10.1017/S0305004100065312
- I. J. Maddox, A Tauberian theorem for statistical convergence, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 2, 277–280. MR 1002541, DOI 10.1017/S0305004100078105
- S. Mazur, On the generalized limit of bounded sequences, Colloq. Math. 2 (1951), 173–175 (1952). MR 49354, DOI 10.4064/cm-2-3-4-173-175
- Alan H. Mekler, Finitely additive measures on ${\rm \textbf {N}}$ and the additive property, Proc. Amer. Math. Soc. 92 (1984), no. 3, 439–444. MR 759670, DOI 10.1090/S0002-9939-1984-0759670-1
- John Rainwater, Regular matrices with nowhere dense support, Proc. Amer. Math. Soc. 29 (1971), 361. MR 279609, DOI 10.1090/S0002-9939-1971-0279609-6
- Walter Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409–419. MR 80902
- T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139–150 (English, with Russian summary). MR 587239
- Albert Wilansky, Summability through functional analysis, North-Holland Mathematics Studies, vol. 85, North-Holland Publishing Co., Amsterdam, 1984. Notas de Matemática [Mathematical Notes], 91. MR 738632
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 319-327
- MSC: Primary 40D20; Secondary 40D25
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095221-7
- MathSciNet review: 1095221