Every superatomic subalgebra of an interval algebra is embeddable in an ordinal algebra
HTML articles powered by AMS MathViewer
- by Uri Abraham and Robert Bonnet
- Proc. Amer. Math. Soc. 115 (1992), 585-592
- DOI: https://doi.org/10.1090/S0002-9939-1992-1074745-2
- PDF | Request permission
Abstract:
Let us recall that a Boolean algebra is superatomic if every subalgebra is atomic. So by the definition, every subalgebra of a superatomic algebra is superatomic. An obvious example of a superatomic algebra is the interval algebra generated by a well-ordered chain. In this work, we show that every superatomic subalgebra of an interval algebra is embeddable in an ordinal algebra, that is by definition, an interval algebra generated by a well-ordered chain. As a corollary, if $B$ is an infinite superatomic subalgebra of an interval algebra, then $B$ and the set $\operatorname {At}(B)$ of atoms of $B$ have the same cardinality.References
- R. Bonnet, M. Rubin, and H. Si-Kaddour, On Boolean algebras with well-founded set of generators, Trans. Amer. Math. Soc., submitted.
R. Bonnet and S. Shelah, On $HCO$ spaces. An uncountable compact ${T_2}$ space, different of ${\aleph _1} + 1$, which is homeomorphic to each of its uncountable closed subspace, Israel J. Math., (second version, 1991, submitted).
- George W. Day, Superatomic Boolean algebras, Pacific J. Math. 23 (1967), 479–489. MR 221993
- Paul R. Halmos, Lectures on Boolean algebras, Van Nostrand Mathematical Studies, No. 1, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR 0167440
- Sabine Koppelberg, Handbook of Boolean algebras. Vol. 1, North-Holland Publishing Co., Amsterdam, 1989. Edited by J. Donald Monk and Robert Bonnet. MR 991565
- R. D. Mayer and R. S. Pierce, Boolean algebras with ordered bases, Pacific J. Math. 10 (1960), 925–942. MR 130842
- Judy Roitman, Superatomic Boolean algebras, Handbook of Boolean algebras, Vol. 3, North-Holland, Amsterdam, 1989, pp. 719–740. MR 991608 J. Roseinstein, Linear ordering, Academic Press, NY, 1982. M. Rubin and S. Shelah, On the cardinality of superatomic subalgebra of an interval algebra, 1988 (unpublished).
- Roman Sikorski, Boolean algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 25, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0126393
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 585-592
- MSC: Primary 06E05; Secondary 03G05, 06A05, 54F05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1074745-2
- MathSciNet review: 1074745