Generic spectral properties of measure-preserving maps and applications
HTML articles powered by AMS MathViewer
- by Andrés del Junco and Mariusz Lemańczyk
- Proc. Amer. Math. Soc. 115 (1992), 725-736
- DOI: https://doi.org/10.1090/S0002-9939-1992-1079889-7
- PDF | Request permission
Abstract:
Let $\mathcal {K}$ denote the group of all automorphisms of a finite Lebesgue space equipped with the weak topology. For $T \in \mathcal {K}$, let ${\sigma _T}$ denote its maximal spectral type. Theorem 1. There is a dense ${G_\delta }$ subset $G \subset \mathcal {K}$ such that, for each $T \in G$ and $k(1), \ldots ,k(l) \in {\mathbb {Z}^ + },k’(1), \ldots ,k’(l’) \in {\mathbb {Z}^ + }$, the convolutions \[ {\sigma _{{T^{k(1)}}}}* \cdots *{\sigma _{{T^{k(l)}}}}\quad and\quad {\sigma _{{T^{k’(1)}}}}* \cdots *{\sigma _{{T^{k’(l’)}}}}\] are mutually singular, provided that ($(k(1), \ldots ,k(l))$) is not a rearrangement of $(k’(1), \ldots ,k’(l’))$. Theorem 1 has the following consequence. Theorem 2. $\mathcal {K}$ has a dense ${G_\delta }$ subset $F \subset G$ such that for $T \in F$ the following holds: For any ${\mathbf {k}}:\mathbb {N} \to \mathbb {Z} - \{ 0\}$ and $l \in \mathbb {Z} - \{ 0\}$, the only way that ${T^l}$, or any factor thereof, can sit as a factor in ${T^{{\mathbf {k}}(1)}} \times {T^{{\mathbf {k}}(2)}} \times \cdots$ is inside the $i$th coordinate $\sigma$-algebra for some $i$ with ${\mathbf {k}}(i) = l$. Theorem 2 has applications to the construction of certain counterexamples, in particular nondisjoint automorphisms having no common factors and weakly isomorphic automorphisms that are not isomorphic.References
- M. A. Akcoglu, R. V. Chacon, and T. Schwartzbauer, Commuting transformations and mixing, Proc. Amer. Math. Soc. 24 (1970), 637–642. MR 254212, DOI 10.1090/S0002-9939-1970-0254212-1 J. R. Choksi and M. G. Nadkarni, Baire category in spaces of measure, unitary operators and transformations, preprint.
- S. Ferenczi, Systèmes localement de rang un, Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), no. 1, 35–51 (French, with English summary). MR 740249
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- Frank Hahn and William Parry, Some characteristic properties of dynamical systems with quasi-discrete spectra, Math. Systems Theory 2 (1968), 179–190. MR 230877, DOI 10.1007/BF01692514
- Paul R. Halmos, Lectures on ergodic theory, Chelsea Publishing Co., New York, 1960. MR 0111817
- Andrés del Junco, Disjointness of measure-preserving transformations, minimal self-joinings and category, Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), Progr. Math., vol. 10, Birkhäuser, Boston, Mass., 1981, pp. 81–89. MR 633762
- A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7 (1987), no. 4, 531–557. MR 922364, DOI 10.1017/S0143385700004193 A. B. Katok, Constructions in ergodic theory, preprint.
- Mariusz Lemańczyk, On the weak isomorphism of strictly ergodic homeomorphisms, Monatsh. Math. 108 (1989), no. 1, 39–46. MR 1018823, DOI 10.1007/BF01300065
- M. Lemańczyk, Weakly isomorphic transformations that are not isomorphic, Probab. Theory Related Fields 78 (1988), no. 4, 491–507. MR 950343, DOI 10.1007/BF00353873
- Mariusz Lemańczyk and Mieczysław K. Mentzen, On metric properties of substitutions, Compositio Math. 65 (1988), no. 3, 241–263. MR 932072
- D. Newton, Coalescence and spectrum of automorphisms of a Lebesgue space, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 117–122. MR 289748, DOI 10.1007/BF00536902
- Donald S. Ornstein, On the root problem in ergodic theory, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 347–356. MR 0399415
- Donald S. Ornstein, Daniel J. Rudolph, and Benjamin Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 37 (1982), no. 262, xii+116. MR 653094, DOI 10.1090/memo/0262
- Daniel J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. Analyse Math. 35 (1979), 97–122. MR 555301, DOI 10.1007/BF02791063 Ya. G. Sinai, On weak isomorphism of transformations with invariant measure, Mat. Sb. 63 (1963), 23-42, (Russian) A. M. Stepin, Spectral properties of generic dynamical systems, Math. U.S.S.R. Izv. 29, 159-192.
- Jean-Paul Thouvenot, The metrical structure of some Gaussian processes, Proceedings of the conference on ergodic theory and related topics, II (Georgenthal, 1986) Teubner-Texte Math., vol. 94, Teubner, Leipzig, 1987, pp. 195–198. MR 931147
- William A. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), no. 4, 335–341. MR 685378, DOI 10.1007/BF01667386
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 725-736
- MSC: Primary 28D05; Secondary 47A35
- DOI: https://doi.org/10.1090/S0002-9939-1992-1079889-7
- MathSciNet review: 1079889