Primitive elements of Galois extensions of finite fields
HTML articles powered by AMS MathViewer
- by Isao Kikumasa and Takasi Nagahara
- Proc. Amer. Math. Soc. 115 (1992), 593-600
- DOI: https://doi.org/10.1090/S0002-9939-1992-1081697-8
- PDF | Request permission
Abstract:
As is well known, ${N_q}(n) = (1/n)\sum \nolimits _{d|n} {\mu (d){q^{n/d}}}$ coincides with the number of monic irreducible polynomials of $\operatorname {GF}(q)[X]$ of degree $n$. In this note we discuss the curve $_n{{\text {N}}_X}(n)$ and the solutions of equations $_n{{\text {N}}_X}(n) = b(b \geq n)$. As a corollary of these results, we present a necessary and sufficient arithmetical condition for $R/K$ to have a primitive element.References
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- G. J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461–479. MR 210699, DOI 10.1090/S0002-9947-1966-0210699-5
- Isao Kikumasa, On primitive elements of Galois extensions of commutative semi-local rings. II, Math. J. Okayama Univ. 31 (1989), 57–71. MR 1043348
- Isao Kikumasa and Takasi Nagahara, On primitive elements of Galois extensions of finite commutative algebras, Math. J. Okayama Univ. 32 (1990), 13–24. MR 1112007
- Isao Kikumasa and Takasi Nagahara, Primitive elements of cyclic extensions of commutative rings, Math. J. Okayama Univ. 29 (1987), 91–102 (1988). MR 936732
- Isao Kikumasa, Takasi Nagahara, and Kazuo Kishimoto, On primitive elements of Galois extensions of commutative semi-local rings, Math. J. Okayama Univ. 31 (1989), 31–55. MR 1043347
- Kazuo Kishimoto, Notes on biquadratic cyclic extensions of a commutative ring, Math. J. Okayama Univ. 28 (1986), 15–20 (1987). MR 885007 R. Lidl and Niederreiter, Finite fields, Encyclopedia Math. Appl., vol. 20, Addison-Wesley, Reading, Massachusetts, 1983.
- Takashi Nagahara, On separable polynomials over a commutative ring. III, Math. J. Okayama Univ. 16 (1973/74), 189–197. MR 345948
- Takasi Nagahara and Atsushi Nakajima, On cyclic extensions of commutative rings, Math. J. Okayama Univ. 15 (1971/72), 81–90. MR 297761
- Takasi Nagahara and Atsushi Nakajima, On separable polynomials over a commutative ring. IV, Math. J. Okayama Univ. 17 (1974), 49–58. MR 364219
- Richard S. Pierce, Associative algebras, Studies in the History of Modern Science, vol. 9, Springer-Verlag, New York-Berlin, 1982. MR 674652
- Jean-Daniel Thérond, Le théorème de l’élément primitif pour un anneau semi-local, J. Algebra 105 (1987), no. 1, 29–39 (French). MR 871745, DOI 10.1016/0021-8693(87)90178-5
- O. E. Villamayor and D. Zelinsky, Galois theory for rings with finitely many idempotents, Nagoya Math. J. 27 (1966), 721–731. MR 206055
- Paul Wolf, Algebraische Theorie der Galoisschen Algebren. Mathematische Forschungsberichte, III, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). MR 0086809
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 593-600
- MSC: Primary 12E20; Secondary 11T99, 12E12, 13B05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1081697-8
- MathSciNet review: 1081697