$t$-linked overrings of Noetherian weakly factorial domains
HTML articles powered by AMS MathViewer
- by Mary B. Martin and M. Zafrullah
- Proc. Amer. Math. Soc. 115 (1992), 601-604
- DOI: https://doi.org/10.1090/S0002-9939-1992-1081699-1
- PDF | Request permission
Abstract:
An integral domain $D$ is a WFD if each nonzero nonunit of $D$ is a product of primary elements of $D$. We show that each $t$-linked overring of a Noetherian WFD is again a WFD. This leads to the conclusion that the integral closure of a Noetherian WFD is a UFD.References
- D. D. Anderson and L. A. Mahaney, On primary factorizations, J. Pure Appl. Algebra 54 (1988), no. 2-3, 141–154. MR 963540, DOI 10.1016/0022-4049(88)90026-6
- D. D. Anderson and Muhammad Zafrullah, Weakly factorial domains and groups of divisibility, Proc. Amer. Math. Soc. 109 (1990), no. 4, 907–913. MR 1021893, DOI 10.1090/S0002-9939-1990-1021893-7
- David E. Dobbs, Evan G. Houston, Thomas G. Lucas, and Muhammad Zafrullah, $t$-linked overrings and Prüfer $v$-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835–2852. MR 1025612, DOI 10.1080/00927878908823879
- Robert Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972. MR 0427289
- Julien Querré, Sur une propiété des anneaux de Krull, Bull. Sci. Math. (2) 95 (1971), 341–354 (French). MR 299596
- Nicole Raillard, Sur les anneaux de Mori, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), no. 23, Ai, A1571–A1573 (French, with English summary). MR 379482
- Muhammad Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), no. 1-3, 29–62. MR 788672, DOI 10.1007/BF01168346
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 601-604
- MSC: Primary 13F15; Secondary 13B22, 13E05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1081699-1
- MathSciNet review: 1081699