Immanants, Schur functions, and the MacMahon master theorem
HTML articles powered by AMS MathViewer
- by I. P. Goulden and D. M. Jackson
- Proc. Amer. Math. Soc. 115 (1992), 605-612
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086326-5
- PDF | Request permission
Abstract:
The relationship between the immanant and the Schur symmetric function is examined. Two expressions for the immanant are given in terms of the determinant. Generalisations include Foata and Zeilberger’s $\beta$-extension of the MacMahon Master theorem. The relationships to some little known results of Littlewood and to idempotents constructed by Young are given.References
- Dominique Foata and Doron Zeilberger, Laguerre polynomials, weighted derangements, and positivity, SIAM J. Discrete Math. 1 (1988), no. 4, 425–433. MR 968850, DOI 10.1137/0401043
- A. M. Garsia and J. Remmel, Symmetric functions and raising operators, Linear and Multilinear Algebra 10 (1981), no. 1, 15–23. MR 615022, DOI 10.1080/03081088108817389
- I. P. Goulden and D. M. Jackson, Immanants of combinatorial matrices, J. Algebra 148 (1992), no. 2, 305–324. MR 1163738, DOI 10.1016/0021-8693(92)90196-S J. S. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, Journal des Mathématiques (4), 8 (1892), 1-86.
- D. M. Jackson, The unification of certain enumeration problems for sequences, J. Combinatorial Theory Ser. A 22 (1977), no. 1, 92–96. MR 429581, DOI 10.1016/0097-3165(77)90066-8
- D. E. Littlewood, Invariant theory, tensors and group characters, Philos. Trans. Roy. Soc. London Ser. A 239 (1944), 305–365. MR 10594, DOI 10.1098/rsta.1944.0001 —, The theory of group characters, Clarendon Press, Oxford, 1950.
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- Percy A. MacMahon, Combinatory analysis, Chelsea Publishing Co., New York, 1960. Two volumes (bound as one). MR 0141605
- Russell Merris and William Watkins, Inequalities and identities for generalized matrix functions, Linear Algebra Appl. 64 (1985), 223–242. MR 776529, DOI 10.1016/0024-3795(85)90279-4 G. de B. Robinson The collected papers of Alfred Young: 1873-1940, Math. Exp. No. 21, University of Toronto, 1977.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 605-612
- MSC: Primary 05E05; Secondary 05A17, 05E10, 15A15
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086326-5
- MathSciNet review: 1086326