A generic $H$-invariant in a multiplicity-free $G$-action
HTML articles powered by AMS MathViewer
- by Chen-bo Zhu
- Proc. Amer. Math. Soc. 115 (1992), 629-635
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086348-4
- PDF | Request permission
Abstract:
For a prehomogeneous action of a reductive group $G$ on a vector space $V$, we construct a formal power series $L$ that is shown to have a nonzero projection to every $G$-isotypic component of $P(V)$. When $(G,V)$ is multiplicity-free, these "Fourier components" of the function $L$ provide all the $H$-invariants in $P(V)$ for some spherical subgroup $H$ of $G$. Three interesting examples are presented.References
- I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Models of representations of Lie groups, Selecta Math. Soviet 1 (1981), 121-142.
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539–570. MR 986027, DOI 10.1090/S0002-9947-1989-0986027-X
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- Roger Howe and T\B{o}ru Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991), no. 3, 565–619. MR 1116239, DOI 10.1007/BF01459261
- Kenneth D. Johnson, On a ring of invariant polynomials on a Hermitian symmetric space, J. Algebra 67 (1980), no. 1, 72–81. MR 595020, DOI 10.1016/0021-8693(80)90308-7
- Frank J. Servedio, Prehomogeneous vector spaces and varieties, Trans. Amer. Math. Soc. 176 (1973), 421–444. MR 320173, DOI 10.1090/S0002-9947-1973-0320173-7
- Goro Shimura, On differential operators attached to certain representations of classical groups, Invent. Math. 77 (1984), no. 3, 463–488. MR 759261, DOI 10.1007/BF01388834 E. B. Vinberg and B. N. Kimelfeld, Homogeneous domains in flag manifolds and spherical subgroups of semi-simple Lie groups, Functional Anal. Appl. 12 (1978), 12-19.
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
- D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097 C. Zhu, Two topics in harmonic analysis on reductive groups, thesis, Yale Univ., 1990.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 629-635
- MSC: Primary 20G05; Secondary 15A72
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086348-4
- MathSciNet review: 1086348