Cesàro and general Euler-Borel summability
HTML articles powered by AMS MathViewer
- by Laying Tam
- Proc. Amer. Math. Soc. 115 (1992), 747-755
- DOI: https://doi.org/10.1090/S0002-9939-1992-1087470-9
- PDF | Request permission
Abstract:
The general Euler-Borel summability method is a method that includes the Euler, discrete Borel, Meyer-König, Taylor, and Karamata methods as special cases. We prove that under a certain condition the Cesàro summability of a sequence implies its summability by a general Euler-Borel method.References
- Bogdan M. Bajšanski, Sur une classe générale de procédés de sommations du type d’Euler-Borel, Acad. Serbe Sci. Publ. Inst. Math. 10 (1956), 131–152 (French). MR 84605
- David Borwein and Tom Markovich, Cesàro and Borel-type summability, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1108–1112. MR 954991, DOI 10.1090/S0002-9939-1988-0954991-5
- J. Clunie and P. Vermes, Regular Sonnenschein type summability methods, Acad. Roy. Belg. Bull. Cl. Sci. (5) 45 (1959), 930–954. MR 125371
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- D. J. Newman, Homomorphisms of $l_{+}$, Amer. J. Math. 91 (1969), 37–46. MR 241980, DOI 10.2307/2373267 L. Tarn, The general Euler-Borel summability method, Ph. D. thesis, Ohio State Univ. 1990.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 747-755
- MSC: Primary 40G05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1087470-9
- MathSciNet review: 1087470