Integral overrings of two-dimensional going-down domains
HTML articles powered by AMS MathViewer
- by David E. Dobbs and Marco Fontana
- Proc. Amer. Math. Soc. 115 (1992), 655-662
- DOI: https://doi.org/10.1090/S0002-9939-1992-1088440-7
- PDF | Request permission
Abstract:
It is proved that if $R$ is a $2$-root closed two-dimensional going-down domain with no factor domain of characteristic 2, then each integral overling of $R$ is a going-down domain. An example is given to show that the "$2$-root closed" hypothesis cannot be deleted.References
- D. D. Anderson and M. Zafrullah, Almost Bézout domains, J. Algebra 142 (1991), no. 2, 285–309. MR 1127065, DOI 10.1016/0021-8693(91)90309-V
- David F. Anderson, David E. Dobbs, and Moshe Roitman, Root closure in commutative rings, Ann. Sci. Univ. Clermont-Ferrand II Math. 26 (1990), 1–11. MR 1112633
- Gerhard Angermüller, On the root and integral closure of Noetherian domains of dimension one, J. Algebra 83 (1983), no. 2, 437–441. MR 714254, DOI 10.1016/0021-8693(83)90228-4
- Gerhard Angermüller, Root closure, J. Algebra 90 (1984), no. 1, 189–197. MR 757088, DOI 10.1016/0021-8693(84)90205-9 N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, MA, 1972.
- David E. Dobbs, On going down for simple overrings. II, Comm. Algebra 1 (1974), 439–458. MR 364225, DOI 10.1080/00927877408548715
- David E. Dobbs, Ascent and descent of going-down rings for integral extensions, Bull. Austral. Math. Soc. 15 (1976), no. 2, 253–264. MR 427296, DOI 10.1017/S0004972700022619
- David E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), no. 2, 353–363. MR 424795
- David E. Dobbs, Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math. 4 (1978), no. 4, 551–567. MR 523613
- David E. Dobbs and Marco Fontana, Locally pseudovaluation domains, Ann. Mat. Pura Appl. (4) 134 (1983), 147–168 (English, with Italian summary). MR 736738, DOI 10.1007/BF01773503
- David E. Dobbs, Marco Fontana, and Ira J. Papick, Direct limits and going-down, Comment. Math. Univ. St. Paul. 31 (1982), no. 2, 129–135. MR 700997
- David E. Dobbs and Ira J. Papick, On going-down for simple overrings. III, Proc. Amer. Math. Soc. 54 (1976), 35–38. MR 417153, DOI 10.1090/S0002-9939-1976-0417153-8
- David E. Dobbs and Ira J. Papick, Going down: a survey, Nieuw Arch. Wisk. (3) 26 (1978), no. 2, 255–291. MR 491656
- Marco Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. (4) 123 (1980), 331–355 (English, with Italian summary). MR 581935, DOI 10.1007/BF01796550
- John R. Hedstrom and Evan G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137–147. MR 485811
- William Heinzer and Jack Ohm, The finiteness of $I$ when $R[X]/I$ is $R$-flat. II, Proc. Amer. Math. Soc. 35 (1972), 1–8. MR 306177, DOI 10.1090/S0002-9939-1972-0306177-3
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 655-662
- MSC: Primary 13B24; Secondary 13G05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1088440-7
- MathSciNet review: 1088440