Projections $P$ on $C=C[-1,1]$ which interpolate at $\dim (P(C))$ or more points
HTML articles powered by AMS MathViewer
- by Chengmin Yang
- Proc. Amer. Math. Soc. 115 (1992), 669-676
- DOI: https://doi.org/10.1090/S0002-9939-1992-1089415-4
- PDF | Request permission
Abstract:
Let $V$ be an $n$ dimensional subspace of $C[ - 1,1]$. This paper gives a necessary and sufficient condition for a bounded linear projection $P$ from $C[ - 1,1]$ onto $V$ to have the property that $Pf$ interpolates $f$ at $n$ or more points for any $f \in C[ - 1,1]$.References
- B. L. Chalmers, G. M. Phillips, and P. J. Taylor, Polynomial approximation using projections whose kernels contain the Chebyshev polynomials, J. Approx. Theory 53 (1988), no. 3, 321–334. MR 947435, DOI 10.1016/0021-9045(88)90026-3
- Lawrence Narici and Edward Beckenstein, Topological vector spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 95, Marcel Dekker, Inc., New York, 1985. MR 812056
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- Chengmin Yang, WT measure vector spaces, Anal. Math. 19 (1993), no. 1, 53–64 (English, with Russian summary). MR 1232054, DOI 10.1007/BF01904039
- Roland Zielke, Discontinuous Čebyšev systems, Lecture Notes in Mathematics, vol. 707, Springer, Berlin, 1979. MR 540207
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 669-676
- MSC: Primary 46E15; Secondary 41A65
- DOI: https://doi.org/10.1090/S0002-9939-1992-1089415-4
- MathSciNet review: 1089415