On the retarded Liénard equation
HTML articles powered by AMS MathViewer
- by Bo Zhang
- Proc. Amer. Math. Soc. 115 (1992), 779-785
- DOI: https://doi.org/10.1090/S0002-9939-1992-1094508-1
- PDF | Request permission
Abstract:
We consider the equation $x'' + f(x)x’ + g(x(t - h)) = 0$ in which $f,g$ are continuous with $f(x) > 0$ for $x \in R,h$ is a nonnegative constant, and $xg(x) > 0$ if $|x| \geq k$ for some $k \geq 0$. Necessary and sufficient conditions are given for boundedness of all solutions and their derivatives. When $k = 0$ we give necessary and sufficient conditions for all solutions and their derivatives to converge to zero.References
- T. A. Burton, On the equation $x^{\prime \prime }+f(x)h(x^{\prime } )x^{\prime } + g(x)=e(t)$, Ann. Mat. Pura Appl. (4) 85 (1970), 277–285. MR 262595, DOI 10.1007/BF02413538
- T. A. Burton, Stability and periodic solutions of ordinary and functional-differential equations, Mathematics in Science and Engineering, vol. 178, Academic Press, Inc., Orlando, FL, 1985. MR 837654
- T. A. Burton, The generalized Lienard equation, J. SIAM Control Ser. A 3 (1965), 223–230. MR 190462
- John R. Graef, On the generalized Liénard equation with negative damping, J. Differential Equations 12 (1972), 34–62. MR 328200, DOI 10.1016/0022-0396(72)90004-6
- Jack K. Hale, Sufficient conditions for stability and instability of autonomous functional-differential equations, J. Differential Equations 1 (1965), 452–482. MR 183938, DOI 10.1016/0022-0396(65)90005-7
- Tadayuki Hara and Toshiaki Yoneyama, On the global center of generalized Liénard equation and its application to stability problems, Funkcial. Ekvac. 28 (1985), no. 2, 171–192. MR 816825
- Qi Chang Huang and Xi Fu Shi, The global asymptotic behavior of the solutions of a class of systems of second-order ordinary differential equations, Acta Math. Sinica 27 (1984), no. 4, 449–457 (Chinese). MR 767319
- Ji Fa Jiang, The asymptotic behavior of a class of second-order differential equations with applications to electrical circuit equations, J. Math. Anal. Appl. 149 (1990), no. 1, 26–37. MR 1054791, DOI 10.1016/0022-247X(90)90283-L
- N. N. Krasovskiĭ, Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay, Stanford University Press, Stanford, Calif., 1963. Translated by J. L. Brenner. MR 0147744
- Nicolas Minorsky, Nonlinear oscillations, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1962. MR 0137891
- Alfredo S. Somolinos, Periodic solutions of the sunflower equation: $\ddot x+(a/r) x+(b/r)\sin x(t-r)=0$, Quart. Appl. Math. 35 (1977/78), no. 4, 465–478. MR 465265, DOI 10.1090/S0033-569X-1978-0465265-X
- Jitsuro Sugie, On the boundedness of solutions of the generalized Liénard equation without the signum condition, Nonlinear Anal. 11 (1987), no. 12, 1391–1397. MR 917860, DOI 10.1016/0362-546X(87)90091-5
- J. Sugie, On the generalized Liénard equation without the signum condition, J. Math. Anal. Appl. 128 (1987), no. 1, 80–91. MR 915968, DOI 10.1016/0022-247X(87)90215-0
- Gabriele Villari, On the qualitative behaviour of solutions of Liénard equation, J. Differential Equations 67 (1987), no. 2, 269–277. MR 879697, DOI 10.1016/0022-0396(87)90150-1
- Gabriele Villari and Fabio Zanolin, On a dynamical system in the Liénard plane. Necessary and sufficient conditions for the intersection with the vertical isocline and applications, Funkcial. Ekvac. 33 (1990), no. 1, 19–38. MR 1065466
- T. Yoshizawa, Asymptotic behaviors of solutions of differential equations, Differential equations : qualitative theory, Vol. I, II (Szeged, 1984) Colloq. Math. Soc. János Bolyai, vol. 47, North-Holland, Amsterdam, 1987, pp. 1141–1164. MR 890596
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 779-785
- MSC: Primary 34K20; Secondary 34D20, 34D40, 34K15
- DOI: https://doi.org/10.1090/S0002-9939-1992-1094508-1
- MathSciNet review: 1094508