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ON THE RETARDED LIENARD EQUATION

BO ZHANG

(Communicated by Kenneth R. Meyer)

Abstract. We consider the equation x"+f(x)x'+g(x(t—h)) = 0 in which /,

g are continuous with f(x) > 0 for x e R , h is a nonnegative constant, and

xg(x) > 0 if \x\ > k for some k > 0 . Necessary and sufficient conditions are

given for boundedness of all solutions and their derivatives. When k = 0 we

give necessary and sufficient conditions for all solutions and their derivatives to

converge to zero.

We consider the retarded Liénard Equation

(1) x" + f(x)x'+ g(x(t - h)) = 0

in which « is a nonnegative constant and g, /are continuous with f(x) > 0

for all x e R ; it is supposed that exist constants k > 0 and N > 1 such that

(2) xg(x)>0,        x( [XM)di-Nhg(x)) >0   if|x|>fc.

Equation (1), with or without delay, has attracted considerable attention for

more than fifty years, particularly in the theory of asymptotic behavior of solu-

tions (cf. [1-16]). In 1965 Burton [3] obtained the following result:

Theorem B. Suppose that f and g are continuous with f(x) > 0, xg(x) > 0

(fjc/0. Then the zero solution of (I) with « = 0 is globally asymptotically

stable if and only if
/»±oo

(3) /      [f{x) + \g(x)\]dx = ±oo.
Jo

Much effort has gone into the modification of signum conditions on / and

g when boundedness of solutions is considered (cf. [4, 6, 12, 13, 14, 15]).

For the retarded equation (1), it is often assumed that

(4) \g'(x)\ < L for some constant L > 0

and

(4*) xg(x)>0    (i/O),        f(x)>hL
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in order to obtain the results on boundedness and stability (cf. [2, 9, 16]). It is

clear that (2) is a generalization of (4*).

We consider the following questions: Is condition (3) still necessary and

sufficient for boundedness and stability of solutions of (1)? For the case h >

0, is Theorem B still valid when condition (4) is not satisfied? We have an

affirmative answer to these questions.

A system equivalent to ( 1 ) is

{;:

y

-g(x(t-h))-f(x)y.

Notice that condition (2) guarantees the global existence of solutions of system

(5) for increasing t. Let 7?+, R denote the intervals [0, +oo) and (-co, +oo)

respectively. If x or y is written without its argument then the argument is t.

We also denote by V'(t) the upper right-hand derivative of V(t) with respect

to t if no confusion occurs.

Theorem 1. If (2) is satisfied, then all solutions of (5) are bounded if and only

if (3) holds.

Proof. Define F(x) = f¿f(i)dt, G(x) = J¿g(Z)dC, and let x(t) =
x(t, 4>, yo), y(t) = y(t, <ß, yo) be a solution of (5) with </> e C([-h, 0], R),
x(Ç) = <t>(t) for f e [-«, 0], and y(0) = y0 ; then (x(t), y(t)) exists on R+ .

We now define

2

+ 2G(x(t))y(t) + F(x(t))- f   g(x(t + s))ds
J-h

+ N [    [   \g(x(x))\2dxds + P
J-h Jt+s

Vo(t)

+ N I
-h Jt+s

where P = 2sup{|G(£)| : |f| < k} ; then

V¿{t) < - 2(F(x(t)) - Nhg(x(t)))g(x(t)) - (TV- l)h\g(x(t))\2

-(N-l) f   \g(x(t + s))\2ds.
J-h

Next define

(6) Vl(t) = V0(t) + j(N-l)hf   \g(x(t + s))\2ds;

then

(7) V[ < - 2(F(x(t)) - Nhg(x(t)))g(x(t)) - l-(N - l)«|g(x(0)|2

-(7V-1) /   \g(x(t + s))\2ds
J-h

= - |(F(x) - Nhg(x))g(x) - ^(N - l)F(x)g(x)

- 2^(fW - Nhg(x))g(x) -(N-l) I   \g(x(t + s))\2 ds

< -(N-l)F(x)g(x)/2N   if|x|>A:.
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Now define

(8) V2(t) = \y(t)\+ [   \g(x(t + s))\ds.
J-h

We then have

(9) V{(t)<-f(x(t))\y(t)\ + \g(x(t))\.

We will use the following constants

/o = min{f(x) : \x\ < k},        g* = max{\g(x)\ : \x\ < k),

F0 = min{F(k), \F(-k)\],    F* = max{F(k), \F(-k)\},

y = F0(N-l)/4N.

Finally we define

(10) V(t) = Vl(t) + yV2(t);

then

(11) V'(t) < - 2(F(x(t)) - Nhg(x(t)))g(x(t)) - I(7V - l)h\g(x(t))\2

-(N-l) [   \g(x(t + s))\2ds-yf(x)\y(t)\ + y\g(x)\.
J-h

Choose Q > k such that 3^*F* + 2Nh[g*]2 - yf0(Q - k) < -1 and consider

\x(t)\ + \y(t)\>Q:
If |jc(i)| > k then

V'(t) < - ^(N - l)F(x)g(x) - yf(x)\y(t)\ + y\g(x)\

< - 7f(x)\y(t)\ -(N- l)F(x)g(x)/4N.

If |x(0| < k then \y(t)\ >Q-k and

V'(t) < 2\F(x)\\g(x)\ + 2Nh\g(x)\2 + y\g(x)\ - yf(x)\y(t)\

< 2Ï*g* + 2Nh[g*]2 + y\g*\ - yf0(Q - k)< -1.

Thus

(12) V'(t)<0    if \x(t)\ + \y(t)\>Q.

Notice also that

V'(t) < - 2\F(x) - Nhg(x)\\g(x)\ - (N - l)h\g(x)\2/4

r°
-(N-l)       \g(x(t + s))\2 ds + M,

J-h

where M = 4max{|F(£) - JVAg({)||s(i)| : |{| < k} + (N - l)F2/l6hN2.  If
there exists tx > 0 such that V(0) < V(t\) and

V(tx)= max V(s),
0<i</|

then

\x(tx)\ + \y(tx)\<Q



782

and

BO ZHANG

1(N-l)h\g(x(ti))\2 + (N-l) t   \g(x(s))\2ds < M.
4 Jti-h

By (10) it follows that

V(h) = y(tl) + F(x(tl)) r g(x(S))
Ju-h

.2

+ N

+ 2G(x(ti))

u

u-h
[    /'   \g(x(v))\2dvds+X-(N-l)h I      \g(x(s))\2 ds + P

J-hJt{+s ¿ Jt¡-h

f°
+ y\y(ti)\ + y     \g(x(t + s))\ds

J-h

< 2[y(M + F(x(tl))]2 + 2 lj° g(x(tl+s))ds)   + 2G(x(h))

+ Nh[l   \g(x(s))\2 ds + Un - l)h /'   \g(x(s))\2 ds + P
Jti-h ¿ Jti-h

f°
+ y\y(h)\ + y      \g(x(t{+s))\2ds + yh

J-h

<4\y(tl)\2 + 4\F(x(tl))\2 + 2h /   |^(jc(fi + s))\2ds + P
J-h

_._.   ,   ...     2hNM        _       yM

N- 1 N- 1

2hM_

N- 1
< 4|F(x('.))|2 + 2|C?(jc(í,))| + P + 4Q2 +

2NhM       „      yAf

Let # = max{|F(¿)|2 + |G(i)| : |i| < Q} ; then

V(t{)<6K + 4Q2+{2h + 2NN^^M + P

Hence,

F(/)<F(0) + 73   for allie 7?+.

Consequently, we have \y(t)\ < (V(0) + B)/y and

+ y(Q + h) = B.

fx(t) rx(t)

/    M)di + /    \g(i)\di
Jo Jo

< B*    for some B* > 0.

By condition (3), it follows that \x(t)\ is bounded on R+ . This proves that

(3) is sufficient.
Now we show that (3) is necessary. Suppose that condition (3) fails. To be

definite, we assume that

/■+oo

/      [f(s) + \g(s)\]ds<+œ.
Jo

Let <t> e C([-h,0],R) and </>(£) > k, f € [-A, 0], x0 = 0(0). Define

g = max{g(cl>(^)):ie[-h,0]}
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and
/•+OO

yo = 2+hg+    [m + gmdt.
Jx0

Let (x(t), y(t)) be the solution of (5) with x(Ç) = $(£), t\ e [-A, 0] and
y(0) = yo • We claim that y(s) > 1 for all s e R+ .

Now suppose that there exists /■ > 0 such that y(i») = 1 and y (s) > 1 on

[0, ti). Consequently, x(t) is increasing on [0, i»).

Case 1. Suppose that t\ <h . Integrate the second equation in (5) from 0 to

t\ to obtain

y(t\) = vo - / ' g(x(s -h))ds- [' f(x(s))x'(s) ds
Jo Jo

fx(h) p+oo

>yo-hg-        At)dZ>yo-hg-        fig)dZ>\,
JxiO) JXar(0) Jxo

a contradiction.
Case 2. Suppose that /■ > A . Integrating the second equation in (5) from 0

to ii, we have

y(h)=yo- I g(x(s-h))ds- ¡\g(x(s-h))ds- /' f(x(s))x'(s)ds
Jo Jh Jo

>yo-hg- ['    g(x(s)) ds - [ ' f(x(s))x'(s) ds
Jo Jo

r'\-h rt\

>y0-hg- g(x(s))x'(s)ds-       f(x(s))x'(s)ds
Jo Jo

/•+oo /»+oo

>yo-hg- g(t)dt- /(í)dí>l,
Jxo Jxq

a contradiction. Thus y(t) > 1 on R+ and x(t) > t + xq —> +co as t —y +00 .

This completes the proof of Theorem 1.

Theorem 2. If (2) is satisfied with k = 0, then the zero solution of (5) is

globally asymptotically stable if and only if (3) holds.

Proof. Suppose (2) and (3) hold with k = 0. It is clear from the proof of

Theorem 1 that the zero solution of (5) is stable. Let (x(t), y(t)) be any solution

of (5) and Vi(t) be defined in (6), then by (7) we have

Vl'(t)<-(N-l)F(x(t))g(x(t))/2N.

This implies that lim/_+00 inf \x(t)\ = 0.
Now suppose that lim(^+0Osup|x(i)| = A > 0. Then there exist sequences

{i„}, {t'n} such that 0 < t„ < t'„, t„ —y +00 as « -* +00 and

\x(tn)\ = y      l*f/„)l-y>       (j)<|x(/)l<T   on(?">0-

Let

■'.t}
F = minJF(£)g(<
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Thus for t > t'„, we have—    n

Vx(t)<V,(tx)-(N-l) f F(x(s))g(x(s))ds/2N

n       t'

< VX(U) - (N - 1) ¿ / ' F(x(s))g(x(s)) ds/2N

% J'J
_

<Vx(tx)-(N-l)FYj(t'J-tj)l2N.
j=i

Since (2) and (3) hold, there exists a constant B > 0 such that

\x(t)\ + \y(t)\ < B   for t>t0.

Hence,

A     2/1     A

3       3      3-
fi\x'(s)\ds<B(tfj-tj)

J'j

and

À<3B(t'j-tj)    for ; = 1,2,... .

This yields

t,/ x     »,/',     (W- 1)F«A^i(0< Vi(ti)-y    6N'B-.-co   as«^+co,

a contradiction. Therefore, lim,^+0o |x(i)| = 0.

By (6) and (7), it follows that V\(t) —y C > 0 as t-* +oo for some constant

C. Since x(t) —► 0 as t —» -fco , we have y2(i) —> C as t —> +00 . Now suppose

C > 0. Then there exists a constant F > 0 such that t > T implies y2(t) >

C/2. Without loss of generality, we may assume that y(t) > (C/2)xl2 for t >

T. Thus x'(t) > (C/2)x'2 for t > T so that x(t) > x(T) + (C/2)xl2(t - T) -►
+00 as ? —y +00, a contradiction. This yields lim,_^+00y(i) = 0. The proof

of Theorem 1 shows that condition (3) is necessary for the global asymptotic

stability of zero solution of (5). This completes the proof of Theorem 2.
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