A connectedness property of maximal monotone operators and its application to approximation theory
HTML articles powered by AMS MathViewer
- by Libor Veselý
- Proc. Amer. Math. Soc. 115 (1992), 663-667
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095227-8
- PDF | Request permission
Abstract:
We prove a connectedness property of a general maximal monotone operator on a Hilbert space. As a consequence we easily obtain the characterization of components of the set of discontinuity points for metric projections of closed sets in Hilbert spaces. We show that these components are pathwise connected, too.References
- V. S. Balaganskiĭ, On the connection between approximation and geometric properties of sets, Approximation in concrete and abstract Banach spaces (Russian), Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, 1987, pp. 46–53, 124 (Russian). MR 945738 H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Studies, no. 5, Amsterdam, 1973.
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- John R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes in Mathematics, vol. 58, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650456
- Dan Pascali and Silviu Sburlan, Nonlinear mappings of monotone type, Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. MR 531036
- J. Frerking and U. Westphal, On a property of metric projections onto closed subsets of Hilbert spaces, Proc. Amer. Math. Soc. 105 (1989), no. 3, 644–651. MR 946636, DOI 10.1090/S0002-9939-1989-0946636-6
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 663-667
- MSC: Primary 47H05; Secondary 41A65
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095227-8
- MathSciNet review: 1095227