Immersing branched surfaces in dimension three
HTML articles powered by AMS MathViewer
- by Joe Christy
- Proc. Amer. Math. Soc. 115 (1992), 853-861
- DOI: https://doi.org/10.1090/S0002-9939-1992-1098398-2
- PDF | Request permission
Abstract:
We present necessary and sufficient conditions for immersing and embedding branched surfaces in dimension three. We illustrate the result with some applications to dynamics. Finally, we discuss the extension to higher dimensions and codimensions.References
- Joe Christy, Branched surfaces and attractors. I. Dynamic branched surfaces, Trans. Amer. Math. Soc. 336 (1993), no. 2, 759–784. MR 1148043, DOI 10.1090/S0002-9947-1993-1148043-8
- David Gabai and Ulrich Oertel, Essential laminations in $3$-manifolds, Ann. of Math. (2) 130 (1989), no. 1, 41–73. MR 1005607, DOI 10.2307/1971476
- U. Oertel, Incompressible branched surfaces, Invent. Math. 76 (1984), no. 3, 385–410. MR 746535, DOI 10.1007/BF01388466
- Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255, DOI 10.1007/978-1-4757-1947-5
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203. MR 348794
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 853-861
- MSC: Primary 57M20; Secondary 57N10, 57N35
- DOI: https://doi.org/10.1090/S0002-9939-1992-1098398-2
- MathSciNet review: 1098398