A note on vector-valued Hardy and Paley inequalities
HTML articles powered by AMS MathViewer
- by Oscar Blasco
- Proc. Amer. Math. Soc. 115 (1992), 787-790
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101979-0
- PDF | Request permission
Abstract:
The values of $p$ and $q$ for ${L_p}({L_q})$ that satisfy the extension of Paley and Hardy inequalities for vector-valued ${H^1}$ functions are characterized. In particular, it is shown that ${L_2}({L_1})$ is a Paley space that fails Hardy inequality.References
- O. Blasco and A. Pełczyński, Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces, Trans. Amer. Math. Soc. 323 (1991), no. 1, 335–367. MR 979957, DOI 10.1090/S0002-9947-1991-0979957-5
- J. Bourgain, Vector-valued Hausdorff-Young inequalities and applications, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 239–249. MR 950985, DOI 10.1007/BFb0081745
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- J. E. Littlewood, Lectures on the Theory of Functions, Oxford University Press, 1944. MR 0012121 S. J. Szarek, and T. Wolniewicz, A proof of Fefferman’s theorem on multipliers, Inst. Math. Polish Acad. Sci., preprint 209, Warzawa, 1980.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 787-790
- MSC: Primary 42A45; Secondary 42B30, 46E40
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101979-0
- MathSciNet review: 1101979