A note on determinacy
HTML articles powered by AMS MathViewer
- by J. W. Bruce, M. A. S. Ruas and M. J. Saia
- Proc. Amer. Math. Soc. 115 (1992), 865-871
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101980-7
- PDF | Request permission
Abstract:
In this paper, we present a particularly simple and direct proof that the set of noncontact-sufficient ($\mathcal {K}$-sufficient) germs are of infinite codimension. Our proof gives, for each $k$, an integer $r$ with the property that almost all $r$-jets over any $k$-jet $z$ is $\mathcal {K}$-sufficient. Similar results are obtained for $\mathcal {A}$ or right-left equivalence when the source and target dimensions $(n,p)$ are (2,2) and (2,3).References
- J. Bochnak, Relèvement des jets, Séminaire Pierre Lelong (Analyse) (année 1970–1971), Lecture Notes in Math., Vol. 275, Springer, Berlin, 1972, pp. 106–118 (French). MR 0377971
- J. W. Bruce, A. A. du Plessis, and C. T. C. Wall, Determinacy and unipotency, Invent. Math. 88 (1987), no. 3, 521–554. MR 884799, DOI 10.1007/BF01391830
- James Damon, Finite determinacy and topological triviality. I, Invent. Math. 62 (1980/81), no. 2, 299–324. MR 595590, DOI 10.1007/BF01389162 T. J. Gaffney and D. M. Q. Mond, Weighted homogeneous maps from the plane to the plane, preprint, Univ. of Warwick, 1989.
- G.-M. Greuel, Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235–266. MR 396554, DOI 10.1007/BF01352108
- John N. Mather, Generic projections, Ann. of Math. (2) 98 (1973), 226–245. MR 362393, DOI 10.2307/1970783 D. M. Q. Mond, Quasi-homogeneous maps from ${{\mathbf {C}}^2}$ to ${{\mathbf {C}}^3}$, Univ. of Warwick, preprint, 1990.
- Andrew du Plessis, Genericity and smooth finite determinacy, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 295–312. MR 713068, DOI 10.1090/pspum/040.1/713068
- C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), no. 6, 481–539. MR 634595, DOI 10.1112/blms/13.6.481
- Klaus Wirthmüller, A note on contact sufficiency of jets, J. London Math. Soc. (2) 25 (1982), no. 1, 185–192. MR 645875, DOI 10.1112/jlms/s2-25.1.185
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 865-871
- MSC: Primary 58C27
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101980-7
- MathSciNet review: 1101980