Bootstrapping regularity of the Anosov splitting
HTML articles powered by AMS MathViewer
- by Boris Hasselblatt
- Proc. Amer. Math. Soc. 115 (1992), 817-819
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101985-6
- PDF | Request permission
Abstract:
Finite smoothness of the Anosov splitting implies ${C^\infty }$.References
- Yves Benoist, Patrick Foulon, and François Labourie, Flots d’Anosov a distributions stable et instable differentiables, École Polytechnique preprint M949.0690, 1990.
- Renato Feres, Geodesic flows on manifolds of negative curvature with smooth horospheric foliations, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 653–686. MR 1145615, DOI 10.1017/S0143385700006416
- Renato Feres and Anatole Katok, Anosov flows with smooth foliations and rigidity of geodesic flows on three-dimensional manifolds of negative curvature, Ergodic Theory Dynam. Systems 10 (1990), no. 4, 657–670. MR 1091420, DOI 10.1017/S0143385700005836
- Étienne Ghys, Codimension one Anosov flows and suspensions, Dynamical systems, Valparaiso 1986, Lecture Notes in Math., vol. 1331, Springer, Berlin, 1988, pp. 59–72. MR 961093, DOI 10.1007/BFb0083066 Etienne Ghys, Déformations de flots d’Anosov et de groupes Fuchsiens, Annales de l’Institut Fourier (1992) (to appear). Borís Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, preprint IHES/M/91/1, 1991.
- S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 5–61 (1991). MR 1087392
- J.-L. Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana 4 (1988), no. 2, 187–193. MR 1028737, DOI 10.4171/RMI/69
- Masahiko Kanai, Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations, Ergodic Theory Dynam. Systems 8 (1988), no. 2, 215–239. MR 951270, DOI 10.1017/S0143385700004430
- Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
- R. de la Llave, J. M. Marco, and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. (2) 123 (1986), no. 3, 537–611. MR 840722, DOI 10.2307/1971334
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 817-819
- MSC: Primary 58F15; Secondary 58F18
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101985-6
- MathSciNet review: 1101985