A class of primary abelian groups characterized by its socles
HTML articles powered by AMS MathViewer
- by Patrick Keef
- Proc. Amer. Math. Soc. 115 (1992), 647-653
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101986-8
- PDF | Request permission
Abstract:
The $t$-product of a family ${\left \{ {{G_i}} \right \}_{i \in I}}$ of abelian $p$-groups is the torsion subgroup of $\prod \nolimits _{i \in I} {{G_i}}$, which we denote by $\prod \nolimits _{i \in I}^t {{G_i}}$. The $t$-product is, in the homological sense, the direct product in the category of abelian $p$-groups. Let ${\mathcal {R}^s}$ be the smallest class containing the cyclic groups that is closed with respect to direct sums, summands, and $t$-products. It is proven that two groups in ${\mathcal {R}^s}$ are isomorphic iff their socles are isomorphic as valuated vector spaces. This generalizes a classical result on direct sums of torsion-complete groups. As is frequently the case with homomorphisms defined on products, the index sets will be assumed to be nonmeasurable.References
- Stephen U. Chase, On direct sums and products of modules, Pacific J. Math. 12 (1962), 847β854. MR 144932
- Doyle Cutler, Abelian $p$-groups determined by their $p^n$-socle, Abelian group theory (Oberwolfach, 1985) Gordon and Breach, New York, 1987, pp.Β 111β116. MR 1011307 M. Dugas, On socles of abelian $p$-groups in $L$, Rocky Mountain J. Math. 14 (1988), 733-752.
- M. Dugas and B. Zimmermann-Huisgen, Iterated direct sums and products of modules, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp.Β 179β193. MR 645927
- Katsuya Eda, A Boolean power and a direct product of abelian groups, Tsukuba J. Math. 6 (1982), no.Β 2, 187β193. MR 705112, DOI 10.21099/tkbjm/1496159530 L. Fuchs, Infinite Abelian groups, vols. 1, 2, Academic Press, New York, 1970, 1973.
- L. Fuchs, Vector spaces with valuations, J. Algebra 35 (1975), 23β38. MR 371995, DOI 10.1016/0021-8693(75)90033-2
- L. Fuchs and J. M. Irwin, On $p^{\omega +1}$-projective $p$-groups, Proc. London Math. Soc. (3) 30 (1975), part 4, 459β470. MR 374288, DOI 10.1112/plms/s3-30.4.459
- P. Hill, A classification of direct sums of closed groups, Acta Math. Acad. Sci. Hungar. 17 (1966), 263β266. MR 199258, DOI 10.1007/BF01894872
- Paul Hill, The isomorphic refinement theorem for direct sums of closed groups, Proc. Amer. Math. Soc. 18 (1967), 913β919. MR 215919, DOI 10.1090/S0002-9939-1967-0215919-5
- Paul Hill and Charles Megibben, On primary groups with countable basic subgroups, Trans. Amer. Math. Soc. 124 (1966), 49β59. MR 199260, DOI 10.1090/S0002-9947-1966-0199260-9
- John M. Irwin and John D. OβNeill, On direct products of Abelian groups, Canadian J. Math. 22 (1970), 525β544. MR 262357, DOI 10.4153/CJM-1970-061-5
- A. V. Ivanov, Direct sums and complete direct sums of abelian groups, Abelian groups and modules, Tomsk. Gos. Univ., Tomsk, 1980, pp.Β 70β90, 136β137 (Russian). MR 668022
- Patrick Keef, On products of primary abelian groups, J. Algebra 152 (1992), no.Β 1, 116β134. MR 1190407, DOI 10.1016/0021-8693(92)90091-Y
- E. L. Lady, Countable torsion products of abelian $p$-groups, Proc. Amer. Math. Soc. 37 (1973), 10β16. MR 313420, DOI 10.1090/S0002-9939-1973-0313420-4
- Jerzy ΕoΕ, On the complete direct sum of countable abelian groups, Publ. Math. Debrecen 3 (1954), 269β272 (1955). MR 71428, DOI 10.5486/pmd.1954.3.3-4.13
- Alan H. Mekler and Saharon Shelah, Determining abelian $p$-groups from their $n$-socles, Comm. Algebra 18 (1990), no.Β 2, 287β307. MR 1047311, DOI 10.1080/00927879008823915
- Saharon Shelah, On reconstructing separable reduced $p$-groups with a given socle, Israel J. Math. 60 (1987), no.Β 2, 146β166. MR 931873, DOI 10.1007/BF02790788
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 647-653
- MSC: Primary 20K10; Secondary 20K25
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101986-8
- MathSciNet review: 1101986